
Web-based Ontology Browser with Advanced Analysis
Features

A dissertation submitted to The University of Manchester for the degree of Master in
Advanced Computer Science in the Faculty of Engineering and Physical Sciences

2016

Ghadah Abdulrahman S Alghamdi
ID 9546842

School of Computer Science

 2

Table of Contents

Table of Contents ... 2

List of Figures.. 4

List of Tables ... 7

Abstract.. 8

Declaration .. 9

Intellectual Property Statement ... 10

Acknowledgment ... 11

1 Introduction ... 12
1.1 Project Introduction and Motivation ... 12
1.2 Project Objectives and Scope ... 13
1.3 Report Structure .. 14

2 General Background .. 15
2.1 Introduction... 15
2.2 Description Logics .. 16
2.3 OWL Ontologies ... 18
2.4 Related Approaches .. 21
2.5 Summary ... 25

3 Used Tools ... 26
3.1 LETHE .. 26
3.2 OWL API .. 27
3.3 VOWL .. 29
3.4 Summary ... 33

4 Design and Implementation .. 34
4.1 Requirements and Overall System Architecture ... 34
4.2 Implementation Platforms and Programming Language 37
4.3 Use Cases’ Implementation .. 43
4.4 System Integration .. 49
4.5 Summary ... 51

 3

5 System Testing and Illustration ... 52
5.1 System Testing .. 52
5.2 LETHE Web-Analyser: System Illustration ... 55
5.3 Summary ... 65

6 Case Studies .. 66
6.1 Uniform Interpolation and Forgetting Case Study .. 66
6.2 Logical Differences Case Study ... 84
6.3 VOWL and OntoGraf Comparison ... 91
6.4 Our Tool and PATO Tool Comparison .. 94
6.5 Summary ... 99

7 Conclusions and Future Work ... 100

References ... 104

 4

List of Figures

Figure 2-1: The structure of a knowledge representation system based on DLs 16
Figure 2-2: Illustration of Ontology Class inheritance Structure .. 20

Figure 2-3: Classes and their individuals connected by properties 20

Figure 2-4: OWLViz visualisation of the travel ontology ... 24
Figure 3-1: The UML class diagram of OWL API main interfaces 28

Figure 3-2: The difference between owl:Class and rdfs:Class representation 30

Figure 3-3: Illustration of VOWL visual elements .. 30
Figure 3-4: Tables (a) and (b) illustrate VOWL graphical primitives and the colour schema

respectively ... 32
Figure 4-1: The system architecture represented as modules in the client and server sides .. 35

Figure 4-2: Illustration of the system's request processing workflow in Spring MVC 41
Figure 4-3: Code snippet of the Tiles configuration file .. 42

Figure 4-4: Code of handleRequest method in uniform interpolation controller class 43
Figure 4-5: Code of uploadFile method in OntologyFile class ... 44
Figure 4-6: Code snippet for populating ontology symbols to the user 44

Figure 4-7: Code snippet for converting an ontology to a JSON file 45
Figure 4-8: Code snippet for passing a JSON file name to the view layer 46
Figure 4-9: Illustration of webVOWL visualising the "test-ontology-iri-4" file 46
Figure 4-10: Code for ALCH TBoxes interpolation in uniform interpolation class 47

Figure 4-11: Code for the method that computes logical differences based on the ALCH

TBoxes forgetting method (common symbols) .. 47
Figure 4-12: Code for the method that computes the logical differences based on the ALCH

TBoxes forgetting method (specified symbols) .. 48

Figure 4-13: Code for the method that saves ontologies computed by uniform interpolation

 .. 48
Figure 4-14: Code for the method that saves ontologies computed by logical differences ... 49

Figure 4-15: The system integration using Nginx server between Tomcat and NodeJs servers

 .. 51
Figure 5-1: Illustration of tests under running in Intellij performed on LETHE_web 53

Figure 5-2: Main Page of LETHE Web Analyser .. 55

Figure 5-3: The overall page of uniform interpolation interface ... 56
Figure 5-4: First Step (upload ontology) in uniform interpolation page 57

Figure 5-5: Steps 2 (select mode) and 3 (select forgetting method) in uniform interpolation

page ... 58

 5

Figure 5-6: Step 4 (select symbol) in uniform interpolation page ... 58

Figure 5-7: Symbols filtration in Step 4 in uniform interpolation page 59

Figure 5-8: Resulting ontology after the selection of symbols in uniform interpolation page

 .. 59

Figure 5-9: (Visualise) and (Download as OWL/XML) buttons located under resulting

ontology box in uniform interpolation page ... 59

Figure 5-10: Ontology information section and fifth step (further computation) in uniform

interpolation page ... 60
Figure 5-11: The overall page of logical differences interface .. 62

Figure 5-12: Metadata subsection of webVOWL interface ... 63

Figure 5-13: The overall page of webVOWL interface showing the visualisation of bibtex

ontology .. 64

Figure 6-1: The resulting ontology based on ALCH TBoxes forgetting method (uniform

interpolation mode) ... 68
Figure 6-2: Some of the travel original ontology axioms .. 68

Figure 6-3: webVOWL visualisation of the resulting ontology based on ALCH TBoxes

forgetting method (uniform interpolation mode) .. 69
Figure 6-4: The resulting ontology based on ALCH TBoxes forgetting method after

inlcuding object properties (unifrom interpolation mode) .. 70
Figure 6-5: The resulting ontology based on SHQ TBoxes forgetting method (uniform

interpolation mode) ... 71
Figure 6-6: webVOWL visualisation of the resulting ontology based on SHQ TBoxes

forgetting method (uniform interpolation mode) .. 72
Figure 6-7: The resulting ontology based on ALC with ABoxes forgetting method (uniform

interpolation mode) ... 73
Figure 6-8: webVOWL visualisation of the resulting ontology based on ALC with ABoxes

forgetting method (uniform interpolation mode) .. 74

Figure 6-9: The resulting ontology based on ALCH TBoxes forgetting method (forgetting

mode) .. 77

Figure 6-10: webVOWL visualisation of the resulting ontology based on ALCH TBoxes

forgetting method (forgetting mode) .. 78
Figure 6-11: The resulting ontology based on SHQ TBoxes forgetting method (forgetting

mode) .. 79

Figure 6-12: webVOWL visualisation of the resulting ontology based on SHQ TBoxes

forgetting method (forgetting mode) .. 80

Figure 6-13: The resulting ontology based on ALC with ABoxes forgetting method

(forgetting mode) .. 81

 6

Figure 6-14: webVOWL visualisation of the resulting ontology based on ALC with ABoxes

forgetting method (forgetting mode) .. 82

Figure 6-15: SWRC Ontology main concepts structure .. 85
Figure 6-16: webVOWL visualisation of the SWRC ontology version 0.3 87

Figure 6-17: webVOWL visualisation of the SWRC ontology version 0.7.1 88
Figure 6-18: The resulting ontology after applying logical differences function 89

Figure 6-19: Part of the visualisation of the SWRC old version ontology showing the

Unpublished class is a subclass of Publication ... 90
Figure 6-20: OntoGraf visualisation of the travel ontology .. 92

Figure 6-21: The interface of PATO illustrating the step of inserting an ontology and the .net

file before the conversion process .. 95
Figure 6-22: Pajek visualisation of the resulting .clu (partition) file, illustrating the produced

modules in different colours ... 97

Figure 6-23: wevVOWL visualisation of the resulting restricted view ontology 98
Figure 6-24: Extract of .net file syntax .. 98

Figure 6-25: The resulting ontology in readable format .. 98

 7

List of Tables

Table 1: Summary of the unit tests performed on LETHE_web .. 53
Table 2: Summary of the print statements tests performed on LETHE_web 54

Table 3: Summary of the resulting axioms of all forgetting methods (uniform interpolation

mode) .. 75
Table 4: Summary of the resulting axioms of all forgetting methods (forgetting mode) 83

Table 5: Summary of the resulting axioms of logical differences function applied on the

SWRC ontology .. 90
Table 6: Summary of the comparison between webVOWL and OntoGraf 94

Table 7: Summary of the comparison between PATO and our tool 99
Table 8: Summary of the features provided by the LETHE standalone version and the

LETHE web version .. 101

 8

Abstract

Ontologies in information science are representation of certain domain concepts.

They are used in knowledge representation systems that include areas such as

medicine or engineering. These ontologies can be too large in order to fit all of an

application’s vocabularies. Thus, there has been an increasing interest in producing

smaller modular views of ontologies that might otherwise be too big to explore and

analyse. These approaches include modularisation based on partitioning methods and

module extraction, which assists analysis, inspection and use for various purposes by

producing modules from larger ontologies. However, the resulting modules are likely

to be semantically weak, with conceptual redundancies.

 LETHE is an implementation of uniform interpolation, logical differences and

TBox abduction, supporting expressive description logics, which are languages that

express concepts in a structured way. LETHE provides restricted views of

ontologies based on saturation-based reasoning that helps to preserve the logical

entailments of the smaller ontologies. This has many applications, including ontology

analysis, information hiding and ontology reuse. The aim in this project is to develop

a web ontology analyser with advanced analysis features based on the LETHE tool.

The features include visualisation capabilities beneficial for users other than

computer scientists or ontology developers, helping these users to gain deep

understanding of ontologies and their characteristics. Ontology developers can

exploit the analyses features to focus on selected details of an ontology view, which

can be useful for debugging purposes.

The principal aim is to deliver an ontology analyser that supports the functionalities

of LETHE, exploiting visualisation features provided by VOWL. Development of

the tool involves the use of the OWL API, making it possible to achieve LETHE

functionalities within the ontology analyser.

 9

Declaration

No portion of the work referred to in the dissertation has been submitted in support

of an application for another degree or qualification of this or any other university or

other institute of learning.

 10

Intellectual Property Statement

i. The author of this dissertation (including any appendices and/or schedules

to this dissertation) owns certain copyright or related rights in it (the

“Copyright”) and s/he has given The University of Manchester certain

rights to use such Copyright, including for administrative purposes.

ii. Copies of this dissertation, either in full or in extracts and whether in hard

or electronic copy, may be made only in accordance with the Copyright,

Designs and Patents Act 1988 (as amended) and regulations issued under

it or, where appropriate, in accordance with licensing agreements which

the University has entered into. This page must form part of any such

copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and

other intellectual property (the “Intellectual Property”) and any

reproductions of copyright works in the dissertation, for example graphs

and tables (“Reproductions”), which may be described in this dissertation,

may not be owned by the author and may be owned by third parties. Such

Intellectual Property and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this dissertation, the Copyright and any

Intellectual Property and/or Reproductions described in it may take place

is available in the University IP Policy, in any relevant Dissertation

restriction declarations deposited in the University Library, and The

University Library’s regulations.

http://documents.manchester.ac.uk/display.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/_files/Library-regulations.pdf

 11

Acknowledgment

First, I would like to express my sincere gratitude to my parents who have given me

love and support during my time in Manchester. Their continued communication

with me despite the long distance has encouraged me to work harder. This

accomplishment would not have been possible without them. Thank you.

Second, I would like to thank my supervisor, Dr Renate Schmidt, for her consistent

support and professional advice during the development of the project. She was

always available any time I needed help or advice. Thank you.

Next, I would like to thank Dr Patrick Koopmann for his help in some of the project

matters. Thank you for your quick responses to my questions.

Finally, I would like to express my gratefulness for the opportunity that I had to

pursue my master’s degree at the University of Manchester. It was such a wonderful

experience.

 12

1 Introduction

This chapter aims to provide the introduction of the project and its motivation, objectives and

scope and structure of the report.

1.1 Project Introduction and Motivation

In computer science, ontologies provide terminological information that can be used in

knowledge representation systems. This information represents certain domain vocabularies,

describing the concepts taxonomies and the relationships between them. The representation

of domain concepts and vocabularies is called ontology. Ontologies importance lies in their

usage in artificial intelligence applications, as they are the core of such applications.

Knowledge representation systems have many applications in areas that include medicine,

bio-informatics, the semantic web and software engineering, but analysis tools and editors are

needed to enable users to understand the information provided by potentially large

ontologies. Tools such as Protégé, SWOOP or TopBraid offer many such functions, including

graphical representation of ontologies, reasoning services, explanation of findings and

refactoring methods [1]. Some of these tools also enable segmentation of ontologies into

modules to provide a restricted view. These include the Protégé plugin Prompt, which is

described in more detail in Section 2.4. As such tools produce modules based on the

syntactical properties of ontologies that are likely to include conceptual redundancies

between modules, an analysis tool is needed that can produce restricted views of ontologies

while preserving their semantics. Here, LETHE is used for this purpose.

LETHE, which was developed by Patrick Koopmann, is based on expressive description

logics [2]. Description logics provide models consisting of concepts (or classes), roles,

individuals and the relationships between them [3]. LETHE supports three expressive

description logics: Attributive Language with Complements (ALC), Attributive Language

with Complement and Role Hierarchies (ALCH) and ALC extended with transitive role

axioms with quantified number restrictions (SHQ) [2]. The core functionality of LETHE is

the computation of uniform interpolation of ontologies, extracting specific concepts of an

ontology based on user selection of a particular sub-signature. This process yields a restricted

 13

view of the ontology with several potential applications, such as ontology analysis or

information hiding [3]. In addition, the tool performs two other functionalities: logical

differences and TBox abduction. Logical differences seek to produce the different entailments

of axioms of two ontologies [3] and TBox abduction aims to add a set of axioms of desired

entailments to a given ontology [3].

1.2 Project Objectives and Scope

The aim of the present project is to develop a web browser with advanced analysis features

that exploits the capabilities of the LETHE tool, allowing the user to create a restricted view

of ontologies of interest to them. In addition, through the visualising functionality, the

application will enable the user to gain a deep understanding of the logical structure of

ontologies and the relationships between terms. Ontology developers can also exploit this

tool to focus on details that might be less accessible in the large (original) ontology, assisting

analyses of the ontology. LETHE is used as the backend of this web browser to achieve the

following objectives.

• Develop a web application to provide visualisation capabilities for ontologies.

• Investigate the capabilities of the LETHE Java library in different types of ontology

applications.

• Integrate the LETHE Java library with the web application to achieve the library’s

functionalities in an efficient way.

• Make the application a graphical mirror for what is implemented in the backend of

LETHE.

• Determine the sizes of ontologies that LETHE can reasonably handle and identify

bottlenecks.

• Provide an artefact within the scope of the application (such as a manual) as a

resource for learning how to use LETHE.

• Apply the analyser to a real-life ontology in medicine or bio-informatics.

 14

1.3 Report Structure

This report is structured as follows: Chapter Two outlines the background to ontologies,

description logics, OWL ontologies and the related approaches, which include modularisation

and visualisation approaches. The third chapter describes the tools used during the

development of the project, including LETHE, OWL API and VOWL. The fourth chapter

describes the design of the system and the implementation methodology, clarifying the

overall system architecture along with the platforms of the implementation. The system

integration is also described in the chapter. Chapter Five presents the testing methods that

were conducted on the tool along with an illustration of the system’s functionalities. Chapter

Six provides case studies performed to evaluate the system outcomes. Comparisons between

the tools mentioned in the related approaches and our tool is presented in the chapter as well.

Chapter Seven draws conclusions about the project and describes some objectives to be met

in the future.

 15

2 General Background

This chapter presents general background topics that are relative to the project. The chapter

aims to define the scope of the project and provide reference to the concerned topics of the

project. These topics include introduction to ontologies, description logics, OWL ontologies

and related approaches. The related approaches section discusses other segmentation methods

that lead to smaller ontologies. In addition, visualisation approaches that are used to provide

graphical illustration of ontologies are discussed under the related approaches section.

2.1 Introduction

In computer science, ontologies are forms of data that represent information in a structured

way through the use of certain tools. Gruber defined ontologies in [4] as “an explicit

specification of conceptualisation”. According to his definition, ontologies consist of

concepts that describe a certain area or topic relating to objects in our world [5]. These

concepts are specified by their domain or field, the individuals that relate to such concepts

and the relationships between them [5].

Descriptions of ontologies use logic languages such as Description Logics (DLs) or first-

order logic (FOL), contributing to clearer and more precise descriptions of concepts [6]. They

define concepts as axioms, consisting of classes that formalise the subparts of a concept

belonging to a certain domain. For instance, teacher is a class that describes the concept of

teachers’ existence, representing part of the larger concept of education. The use of logical

languages also facilitates graphical representation of concepts for easier and more concise

identification of their content [3].

Ontologies can be used in many different fields, including medicine, bio-informatics and

engineering. In healthcare, ontologies have been used extensively to define concepts such as

symptoms, diseases or drugs, which can be used in knowledge systems to search in a

professional and efficient way for suitable treatments [7].

 16

2.2 Description Logics

Description Logics (DLs) provide logical descriptions of ontology components, formalising

concepts in a structured way to enable their use in knowledge representation systems [6].

Figure 2-1 illustrates the structure of such a system. In description logics, the knowledge base

consists of concepts and roles. These knowledge bases focus on reasoning, helping to deduce

implicit knowledge from the explicit knowledge in the knowledge base [8]. In addition, many

information processing systems use inference patterns supported by DLs [8]. These patterns

form conceptualisation of concepts and individuals of objects in the world, producing

structures that define sub-concept and super-concept relationships between classes. Such

structures form hierarchies, connecting different concepts and enabling fast processing

through inference services [8]. Moreover, the concepts and individuals of a knowledge base

can be deduced automatically through the use of inference procedures [8].

Figure 2-1: The structure of a knowledge representation system based on DLs [8]

 17

In description logics, ontologies comprise of two parts: ABox and TBox [6]. The ABox

represents knowledge of facts or assertions about individuals belonging to a specific concept

[9]; for example, (Female ∩ Person)(Anna) means that there is a person who is female called

Anna. This states the fact of the existence of such a person called Anna. On the other hand,

The TBox provides terminological information about concepts and the relationships between

them, describing the conceptualisation of a knowledge base [9]. For example: Woman ≡

Person ∩ Female describes the concept of a woman as a person who is female.

Moreover, Baader [8] defines a cyclic ontology as an ontology that has concepts which refers

to itself. For example, A and B are atomic concepts that belong to an ontology O. If B is used

directly by A, where B is on the right-hand side of an axiom of the form: A ⊑ ∃ r.B, B ⊑ s.A,

which its left-hand side is A. Then the ontology of this form is a cyclic ontology. Otherwise,

the ontology is called acyclic [8]. For instance, the axiom

Human’ ≡ Animal ∩∀hasParent.Human’

It means that the Human class is equivalent to the concept of every animal who has a human

parent is human. Here, the Human class directly uses the Animal class.

Description logics feature the ability to express complex types of knowledge by using

expressive description logics, which are extended types of DLs. While there are many types

of expressive description logics, four types in which three of them used by LETHE is

referred to for the purposes of this report. The basic type is ALC (Attributive Language with

Complements), which enables concepts to be described using a range of special types such as

Universal concept (⊤), of which every other concept is a sub-concept, and Bottom concept

(⊥), which is a sub-concept of all other concepts, and of which no concept can be a sub-

concept [8]. In addition, ALC defines a set of constructors: Negation (¬C), Conjunction (C ∩

D), Disjunction (C ∪ D) and Existential quantifier (∃R.C) [8]. These help to define concepts

in an expressive and flexible way; for example, the axiom Professor ⊆ (Person ∩

UniversityEmployee) ∪ (Person ∩ ¬Student) translates as “There is a professor who is a

person and who is also a university employee, or a person who is not a student”. The

description logic ALCH [10] is an extension of ALC that includes role inclusion axioms; for

example, parentOf ⊑ ancestorOf means that the role parentOf is a sub-role of the role

ancestorOf [9].

 18

A third type of description logic is SHQ, which is an extension of ALCH. It includes

transitive roles, where roles can be extended to new roles [10], and qualified number

restrictions, where a role can be restricted to a specified number of roles. Another expressive

language of description logics is SHOIN. It involves a set of constructors that are more

expressive including nominals, inverse roles and cardinality restrictions. The nominal

contractor allows us to define individuals within axioms that are other than the ABox

statements [8]. For example, the axiom Student ∩∃hasCourse.{mathematics}, meaning that

the students have at least one mathematics course. The inverse roles constructor helps to

define a certain property to be inverted in the perspective of another one. For example,

hasChild is the inverse of hasParent role [8]. The cardinality restrictions constructor lets us

define number restrictions that exist in a concept. It is written as ≥ n R (at-least restriction)

and ≤ n R (at-most restriction), where n is the range of nonnegative integers, and R refers to a

role [8, 11]. For instance, the axiom Teacher ∩ ⩾ 2 teaches.Subject implies that a teacher

teaches at least two subjects.

The structuring nature of DLs enables the construction of languages that are used to express

ontologies for use in machine processing [12]. One of these languages is called OWL, which

is described in more detail in Section 2.3. OWL is an extension of its predecessors, OIL and

DAML+OIL [12, 13]. In the OWL language, concepts are called classes, and roles are called

properties. As in DL, OWL uses constructors to create classes. For example, the negation of

concept C (¬C) has its opposite constructor in OWL, which is complementOf. Detailed

description of other constructors can be found in [13].

2.3 OWL Ontologies

OWL (Web Ontology Language) is a semantic web language developed by the World Wide

Web Consortium (W3C), enabling concepts of ontologies to be clearly described, using

operators to describe complex axioms (concepts) such as intersection and union. These

 19

operators enable new concepts to be both defined and described. The W3C has developed an

extended second version of OWL, which is known as OWL 2 [14].

The main components of OWL ontologies are classes, properties and individuals.

• Classes: According to Horridge [17], classes are “sets that contain individuals”. This

means that classes describe the information of a certain area or topic, containing

individuals of concepts that belong to that particular class. Hierarchies can be defined

for a specific topic, forming subclass-of or superclass-of relations; these hierarchies

are known as taxonomies [17]. For example, in the class Teacher, which is a subclass

of Person, Teacher can contain the set of individuals that define teachers. If teacher

Sami is an individual belonging to the class Teacher, this implies that teacher Sami is

also a person because Teacher is a subclass of the class Person. Each OWL ontology

has a general (Top) class called Thing. All of the individuals that belong to a certain

ontology are members of its Thing class. Figure 2-2 illustrates the hierarchical

structure of classes in an ontology.

• Individuals: These represent instances or members of a class, defining objects of a

certain topic.

• Properties: They identify relationships between individuals. For example, in the

axiom Joseph isTaughtBy Sami, isTaughtBy is the property describing the

information that student Joseph is taught by teacher Sami. In OWL 2, there are three

types of properties: object properties, datatype properties and annotation properties

[17].

o Object properties define the relationships between two individuals. For example,

the axiom Sarah hasSibling Mary states that Sarah has a sibling called Mary,

where hasSibling is the object property.

o Annotation properties define descriptions of ontologies that include the ontology’s

properties, classes and individuals. They provide information such as the name of

the ontology’s author and its date of creation. They do not introduce additional

semantic meaning to the ontology [17].

o Datatype properties add data values to individuals. For example, the

hasLastName property would describe the information that Sami’s teacher has the

last name Stewart.

 20

Figure 2-3 illustrates the set of classes Teacher, Student and Book, consisting of individuals

such as Mary and Sam as part of the Student class. As individuals of the Student class, these

represent two students. Individuals can also be connected with other individuals that belong

to a different class through the use of properties. In this case, for instance, Simon is connected

to Mary by the teaches property, which implies that teacher Simon teaches student Mary.

Figure 2-2: Illustration of Ontology Class inheritance
Structure

Figure 2-3: Classes and their individuals connected by properties

 21

2.4 Related Approaches

2.4.1 Modularisation Approaches

Modularisation divides large ontologies into smaller ontologies or modules. This has many

advantages, including easier maintenance of ontologies, improved efficiency of use in

different applications and enhanced understanding of very large or complex ontologies [18].

This section discusses some approaches to modularisation and their implementation of tools

for producing modules of ontologies. Partitioning approaches are discussed with reference to

implementation of the PATO tool [19, 20], and module extraction is discussed with reference

to Prompt [21].

In ontology partitioning, ontologies are divided into several modules by splitting the set of

axioms that belong to a certain ontology into a set of modules {M1, …. , Mk} where Mi is an

ontology [18]. The original ontology can be reproduced by taking the union of all of its

modules. Partitioning approaches vary in how they produce partitions, depending on their

goals and desired results [18].

Structure-based partitioning [22] aims to produce modules with weak connections between

them. The intent is to support the examination of small parts of ontologies, contributing to

better maintenance [18]. The advantage of this approach is that its algorithms enable results

to be matched to application requirements by providing the algorithm with appropriate

parameters. However, this is a non-automatic approach to producing modules [18]. One

example of this approach is the PATO tool [19], which is a standalone application that can be

used to partition ontologies to produce small modules [18]. By accepting different parameters

from the user at every step of the process, the result is tuned to the desired application

requirements [18], using a semi-automatic mechanism to produce modules [19].

The other modularisation approach is module extraction approach (traversal view approach),

which is based on recursive traversal of a set of related elements [18]. The recursion process

uses a vocabulary selected from the original ontology to extract modules from it, taking an

ontology O and a set of terms SV that belong to a certain signature of the ontology SV ⊆

Sig(O) and returning MSV as a module [18]. The approach is well illustrated by a tool called

Prompt, a plugin for the popular ontology editor Protégé [23].

 22

The Prompt suite comprises several packages, one of which is PromptFactor, whose

functionality is to take sub-parts of ontologies. This relies on the mechanism of traversal view

extraction, a functionality described in [21] as factoring sub-ontologies that finds

inconsistencies between the terms (concepts) and list dangling references to the user [21].

One disadvantage of this tool is that the user needs deep understanding of the ontology to be

worked on [18] because of the requirement to manually select classes and their properties.

This makes it difficult for users to select classes from very large ontologies in order to

produce modules [18].

The above tools perform modularisation by finding restricted (smaller) views of larger

ontologies. Although the procedures used to produce modules are not expensive in terms of

effort and processing time, they are likely to produce weak semantic modules. Moreover, user

interaction with some of these tools involves complexity. For example, the Prompt tool

requires users to interact at every step of the process. In addition, partitioning approaches

produce modules based on syntactical properties of the ontologies without the use of

reasoners, especially in the case of the PATO tool [18]. This is because these approaches

extract modules using structure-based partitioning and may also inherit conceptual

redundancies between modules from the original ontology [18]. Furthermore, these are

standalone systems that cannot be used by the web. The following is a summary of the key

advantages of our web-based tool for ontology analysis.

• Ability to select desired signatures to be included in the resulting ontology. The

selection is performed manually in the current version. However, the future version

will involve a semi-automatic way of selecting symbols.

• Production of smaller ontologies, based on the new saturation-based reasoning

methods developed within LETHE.

• Provision of a deep visualisation tool for restricted view ontologies.

• Ease of use of in a web browser without having to install locally on the machine.

• Access on all operating systems, which is an advantage for both developers and users,

who may wish to use different machines or different operating systems.

 23

2.4.2 Visualisation Approaches

Browsing ontologies in a graphical representation is an important aspect of ontology

understanding. Visualisation facilitates the process of analysing ontologies. There are many

tools and plugins that were developed for such a purpose. Some of these tools are OntoGraf

[24] and OWLViz [25]. Both of them are plugins to the popular ontology editor Protégé.

Developed as collaboration between the University of Manchester and Stanford University,

Protégé is an ontology editor that can be used to create ontologies for use in semantic web

applications. It consists of many suites, including visualisation methods, used to analyse

ontologies. In addition, the user can edit ontology files by uploading them to the editor [17].

OntoGraf is used to visualise ontologies and provide various visualisation features that can

help non-expert users in the comprehension of ontologies. This tool went through several

improvements through its development of many versions. Its latest available version is 2.0.3

which is compatible with Protégé-OWL 5.0. The key version of the tool is 0.0.1, which is the

first version. This version included support of various layouts, the relationships between

nodes and filtering them, and the ability to zoom the graph. Another important release of the

tool is 0.0.3, in which tooltips feature was added, which can be configured to show or hide

different detailed information. In addition, the capability of exporting the graph to image type

was added in this version. Detailed information will be apparent from the comparison that is

given in Section 6.3.

Another plugin of Protégé for visualising ontologies is OWLViz. It is used mainly to visualise

class hierarchy relationships. OWLViz exploit the use of automated reasoning by providing

an inferred hierarchy view along with the asserted hierarchy view. In addition, through the

plugin we can distinguish the inconsistent concepts among other ones as they are highlighted

in red. One disadvantage of OWLViz is that it is only restricted to visualising class

hierarchies and ignores an essential type of ontology elements which are object properties.

This can makes it difficult for non-expert ontology users to gain a proper idea about the

ontology. It features the ability to export the graphs to PNG, JPEG or SVG files. Moreover, it

supports several cognitive options that users can select including show class, show parents,

show children, hide class, hide parents and hide children [26]. Figure 2-4 shows the travel

ontology [49] visualised by OWLViz in the inferred model.

 24

The figure shows that the sub-class relation is represented by the “is-a” relation. Moreover, it

can be noticed that the graph lacks of properties, as the focus is only on the ontology’s class

hierarchy.

Figure 2-4: OWLViz visualisation of the travel ontology

 25

The above tools are useful in visualising ontologies. Each one of them has their merits and

demerits. Both of them are Protégé plugins that support the editor with variety of possible

visualisation approaches. As these tools are developed for Java standalone applications, the

use of the mentioned tools is not possible in our tool to visualise the resulting restricted

views. This is due to our tool’s platform, which is web-based. In Chapter 3, Section 3.3

VOWL is presented, which is used in the development of our tool.

2.5 Summary

In this chapter, general background about ontologies was presented. From the description

logics background, we can establish that DLs are the backbone of knowledge representation,

in which many ontology languages were introduced. The importance of OWL language,

which was developed by the W3C, lies in providing machine processing language to build

semantic web applications that exploit ontologies. Related approaches were discussed

regarding the different segmentation methods and the available visualisation approaches of

ontologies. In the next chapter, the background of the tools adapted in the development of the

system is provided.

 26

3 Used Tools

The background of the tools that formulate our system is illustrated in this chapter. LETHE,

the core library of the system is presented in Section 3.1. OWL API, which is the main API

that is needed to accomplish the system’s functionalities, is shown in Section 3.2. Lastly,

VOWL background representation is given in Section 3.3.

3.1 LETHE

As described previously, several of the applications including PATO and Prompt developed

to produce restricted views of ontologies. Such modules are produced based on structure-

based partitioning, which consider weak connections among the modules. Another method of

producing modules is module extraction approach, which produce modules based on

recursive traversal of a set of related elements. Thus, the resulting modules are ontologies that

can be semantically weak, since they are produced based on their structural form. Uniform

interpolation or forgetting is an important alternative method that aims to produce restricted

views while preserving logical entailments by reducing the vocabulary of large ontologies

[2]. The methods for producing a new ontology developed by Koopmann and Schmidt use

the concept of a desired signature [2]. Depending on the desired signature, a new ontology

may contain axioms not included in the input ontology. The signature can be class or property

symbols that belong to a certain ontology. The result is a new ontology obtained from the

original ontology by forgetting information expressed in terms of symbols that are not

desired. The outcomes obtained by uniform interpolation differ slightly from the results given

by forgetting. Uniform interpolation gives ontologies that contain information in the range of

the desired symbols. On the other hand, results obtained by forgetting are concepts that are

not in the range of the desired symbols. In other words, forgetting excludes concepts that are

based on the desired symbols.

Uniform interpolation can also be used to compute logical differences between two

ontologies [2], identifying those axioms shared between two ontologies over a certain

signature. Logical differences can be used to identify whether two ontologies are S-

inseparable, in other words, whether all of their entailments share the same S signature.

 27

According to Koopmann [3], logical differences are computed as the uniform interpolant of a

certain S. The reasoners can then establish whether the axioms of the second ontology are

entailed by the first one. Those axioms that are not entailed by the first ontology represent

new entailments over the selected signature. Logical differences can be used in applications

that track changes in ontologies [3]. Another application of uniform interpolation is TBox

abduction, which adds a set of axioms to an ontology in order to repair an ontology [2].

Among few implementations of uniform interpolation, LETHE is quite unique, which was

developed by Patrick Koopmann [2]. Implementing uniform interpolation, forgetting, logical

differences and TBox abduction, it can be used as a standalone tool or as a Java library. The

standalone tool provides interface for uniform interpolation, which is the core functionality,

using ALC, ALCH and SHQ. For ALCH DLs and SHQ DLs, LETHE forgets the symbols of

TBoxes. In ALC DLs, the tool can also forget symbols involved in ABoxes axioms. To

perform these tasks, it uses saturation-based reasoning methods, which help to preserve the

semantics of ontologies by forgetting of symbols [3]. In LETHE, these methods produce the

set of axioms not including any symbols that should be forgotten. For example, to forget

symbol y, LETHE computes all of the entailments involving the symbol. The result of the

process is an ontology whose axioms do not contain the symbol y [2].

3.2 OWL API

The OWL API is a high level programming interface supporting a number of functionalities:

loading ontologies and creating, managing and saving them. Its general purpose reasoning

functionality provides flexibility when using ontologies in other reasoner implementations,

enabling the development of many different OWL editors and reasoners [27]. It also copes

with the recent second version (OWL 2) [27].

The API supports processing of many types of OWL syntax, including RDF/XML, Turtle and

OWL/XML. In addition, it can parse all the different syntaxes that it processes in an

automatic mechanism without having to install a syntax-specific parser. Based on such

 28

features, an editor can support conversion to different syntaxes [27]. The API also supports

the use of different reasoners to detect axioms that are not entailed by the ontology.

The API design consists of a “set of interfaces”, providing functionalities for reasoning,

creating and manipulating ontologies (Figure 3-1) [27]. An important aspect of the design is

that it is based on the OWL Language structure, which represents the ontology in its simplest

form, “as a set of axioms and annotations” [27]. Figure 3-1 shows the main interface of the

design is the OWLOntology interface, which provides access to the ontology axioms through

the OWLAxiom interface and to its annotations through the OWLAnnotation interface. In

addition, each ontology instance is handled by its own manager through the

OWLOntologyManager interface. This interface enables the management of OWL

functionalities that include creating, loading, changing and saving ontologies. Moreover,

entities that belong to a certain OWL ontology can be identified through the IRI, using the

interface OWLOntologyID. The Internationalized Resource Identifiers (IRI) is used to

identify ontologies and their elements, which is an address that is absolute (not relative) and

refer to a certain ontology element [15]. For example, the address http://www.co-

ode.org/ontologies/pizza/pizza.owl#AsparagusTopping refers to the AsparagusTopping class

in the Pizza ontology [16].

For our tool, the two main functionalities provided by the API are loading and saving

ontologies. The purpose of loading ontologies is to allow the user to choose the desired

Figure 3-1: The UML class diagram of OWL API main interfaces [27]

http://www.co-ode.org/ontologies/pizza/pizza.owl#AsparagusTopping
http://www.co-ode.org/ontologies/pizza/pizza.owl#AsparagusTopping

 29

ontology to work on in order to produce a restricted view. The purpose of the saving

functionality is to preserve the resulting ontology in a certain directory after performing the

LETHE process.

The API also supports the use of the HermiT reasoner used by LETHE, which provides

powerful reasoning capabilities for ontologies based on description logics [28]. The API was

chosen for its compatibility with the LETHE library; in fact, to ensure that the library works

correctly, the API should be embedded with the library as a dependency during development

stage.

3.3 VOWL

The Visual Notation for OWL Ontologies (VOWL) [29] is a language developed specifically

to visualise ontologies constructed in the OWL language. It can visualise most OWL

syntaxes, including RDF/XML, Turtle and OWL/XML. VOWL mainly enables visualisation

of ontology TBoxes, including their classes, properties and datatypes; ABoxes can be

optionally integrated using the visualisation canvas.

Additionally, VOWL offers the advantages of interaction with the graph and manipulation

through force-directed methods [30], which enable dynamic interaction with the layout.

Another advantage is supporting customisation by enabling options such as “datatype

property” to be shown in the graph. Visual representation of ontologies is based on two types

of VOWL building blocks: graphical primitives and colour scheme. VOWL visualises OWL

elements using the graphical primitives and distinguishes between OWL and RDF elements

through the use of different colours. This can be seen in Figure 3-2, where the owl:Class

element is represented in light blue and the rdfs:Class element is represented in pink

[29].

 30

Figure 3-3: Illustration of VOWL visual elements [31]

Figure 3-2: The difference between owl:Class and rdfs:Class representation [29]

 31

VOWL representation of ontology elements vary in their colours and approaches. Figure 3-3

shows that some of the constructors used in ontologies are visualised by VOWL. For

example, the disjunction relation is represented by the mathematical symbol ∪. This is the

same for the conjunction relation, which is represented by ∩ symbol. VOWL also represents

external classes by dark blue colour and the hint “external” exists beneath the class name.

External classes in VOWL are the classes that have IRIs that are different from that of the

original ontology [31]. These IRIs could have been added to the JSON schema for the sake of

visualisation, as this is the way VOWL visualises ontologies. The process of adding those

IRIs could have been done because the ontology lacks of them. In the case of visualising

cardinality restrictions and subclass relations, it follows a similar approach to UML class

diagrams. This can be seen by (x .. y) numbers on top of the arrows for cardinality restrictions

representation, and empty coloured triangle in the subclass relation. The remaining VOWL

specifications of elements can be referred to in reference [32].

The VOWL graphical primitives are used to visualise classes, properties, datatypes and labels

[29]. Figure 3-4 (Table (a)) shows that classes are represented by circles, and properties are

represented by lines connecting the classes. Datatypes are illustrated by rectangles. Class

circles vary in size within a given ontology; classes containing a larger number of individuals

are visualised as larger circles. This rule does not apply to Thing class, which is the root class

in every ontology. Although all of the individuals in an ontology belong to the root class

Thing, it is represented as considerably smaller than other classes [29]. This size is fixed for

all ontologies. Lines are used to connect classes, properties and datatypes, with arrowheads

defining the domain classes and datatypes they belong to. If a class does not belong to a

given domain, then the arrowheads points to owl:Thing class, except in the case of

datatypes properties, where the arrowhead points to rdfs:Literal. This represents the

general class for data values, in which every data value of an ontology is an instance of it.

Rectangles are used to illustrate property labels identified by rdfs:label. If

rdfs:label is empty, the property label can be identified from the last part of the IRI

string [29].

 32

VOWL colouring scheme specifications are based on elements’ functionalities. Colour codes

can be overridden during development to cope with desired application characteristics, but

they should be compatible with VOWL specifications [29]. Figure 3-4 (Table (b)) shows the

colour specification of elements, which clearly visualises the ontology’s semantics, with

general classes coloured lighter than external classes. Although the colouring of an

ontology’s elements is an important aspect of visualisation, this is not required for

visualisation because the aforementioned graphical primitives enable elements to be

distinguished by shape. Elements that should ideally be represented by colours for clarity can

be visualised using text labels.

Table (a) Table (b)

Figure 3-4: Tables (a) and (b) illustrate VOWL graphical primitives and the colour schema respectively [29]

Two implementations were developed by the same VOWL developers to exploit the VOWL

library, one of them is webVOWL, which is developed as a standalone application. The tool

does not depend on a particular parser for the ontology parsing. Instead, it requires ontologies

to be converted to JSON files that can be visualised using VOWL. The process of converting

these ontologies is performed by using OWL2VOWL library, which converts OWL language

to JSON schema [32]. Section 6.3 provides a comparison between the webVOWL tool and

OntoGraf, which is one of the mentioned Protégé plugins that visualises ontologies.

 33

3.4 Summary

This chapter provided comprehensive background about LETHE’s functionalities, OWL API

and VOWL. These tools are used in the development of the system. The backbone of our

system is LETHE, in which its functionalities are exploited to accomplish the project

objectives. OWL API is necessary to be used in our system in order to exploit its

functionalities and provide the dependencies required by LETHE. VOWL is an important

component which provides visualisation means for the resulting ontologies. VOWL’s

background was illustrated to understand their different elements and specifications.

 34

4 Design and Implementation

This chapter defines the system’s requirements and its architecture in Section 4.1. It describes

the platforms and methods used during the implementation of the project in Section 4.2. The

main use cases’ implementation conducted by the server are provided in Section 4.3. Lastly,

the integration between the system’s modules is described as well in Section 4.4.

4.1 Requirements and Overall System Architecture

The objectives of the project that are related to building the system’s components helped in

identifying the main requirements. These objectives are as follows:

- providing a visualisation features that help users in analysing ontologies

- developing a web application that exploit the LETHE library functionalities

- exploit the application in testing the LETHE library with different types of ontologies

The requirements are use cases that are performed by the client and the server. They are

necessary to be identified in order to formulate the system’s modules.

The use cases that the client performs are as follows:

- Uploading an input ontology to the system.

- Selecting from the services; Uniform Interpolation/Forgetting, Logical Differences

and TBox Abduction.

• If Uniform Interpolation/Forgetting service is selected, the client selects the

desired symbols and the forgetting method.

• If Logical Differences service is selected, the client inserts the second ontology,

the approximation level and the forgetting method.

• If TBox Abduction service is selected, the client selects TBox axioms, a set of

signatures S and the forgetting method.

- Visualising the resulting ontology.

- Saving the resulting ontology to OWL format in local machine.

- Saving the resulting graph to SVG format in local machine.

 35

The use cases that are conducted by the server are as follows:

• Loading the input ontology with its symbols.

• Processing of the ontology using LETHE, based on the selected services and

symbols.

• Displaying the resulting ontology.

• Visualising the resulting ontology using webVOWL.

• Displaying the graph in the UI.

The main system components are the LETHE library, webVOWL, the ontology handler

(OWL API) and the user interface (UI). Each of these components have a major role it plays

to achieve the functionalities of the system. Figure 4-1 illustrates the components of the

system architecture.

Figure 4-1: The system architecture represented as modules in the client and server sides

LETHE’s role in the system architecture is to provide the services of uniform interpolation,

logical differences and TBox abduction. The interpolation of the ontology depends on the

type of the expressive language that is interpolated for. These expressive languages are

ALCH, SHQ and ALC. Each of these languages represents the forgetting method that is used

by the services (uniform interpolation and logical differences) to compute the resulting

 36

ontology. As it was mentioned in the background section (3.1), the interpolation of TBoxes is

conducted for ALCH and SHQ DLs. For ALC DLs, the interpolation of ABoxes is also

performed.

Uniform interpolation/Forgetting service needs three basic parameters which are an input

ontology, the forgetting method and a set of symbols in which the resulting views are based

on. On the other hand, logical differences service needs four parameters which are two input

ontologies to compute the logical differences between them, the forgetting method,

approximation level and a set of symbols. The set of symbols is an optional parameter, as the

user can also compute the differences based on common symbols that are shared between the

two ontologies.

The other important component of our system is webVOWL. This tool represents the

visualisation module of our system. webVOWL provides visualisation methods for the

computed ontologies. In addition, it can be used by the user to visualise the uploaded

ontology before computing them with a certain service. In order to use webVOWL for

visualising ontologies provided by our system, OWL2VOWL library must be used.

OWL2VOWL is a library that converts ontologies in OWL language to VOWL language in

order to represent the elements of OWL graphically [31]. The VOWL language is represented

by JSON string, which can be visualised by the use of D3 [54, 55]. D3 is a JavaScript library

that uses HTML, CSS and SVG to visualise data. VOWL specification of OWL elements has

been provided in details in Chapter 3, Section 3.3.

The ontology handler is a component that contributes to the system by handling ontologies

functionalities: loading ontologies into the server, saving ontologies to the server’s file

system and LETHE’s dependencies on the OWL API, including the classes OWLEntity,

OWLOntology and OWLLogicalAxiom.

The user interface (UI) plays an important role in the system architecture, as it is the gateway

through which the system provides its services.

 37

4.2 Implementation Platforms and Programming Language

The implementation platforms that were used during the development of the project are the

following:

Intellij Integrated Development Environment (IDE)

The tool has been built using Intellij IDE which is a well-known integrated development

environment used to develop java-language software applications [33]. It supports various

technologies and frameworks that can assists in developing sophisticated applications.

Moreover, it is compatible with most operating systems that support Java, including,

Windows, Mac OS and Linux. The IDE is supported with several plugins that makes it easy

to develop web applications. One of the web frameworks supported by it is Spring Web

model-view-controller (MVC), which has been used in the development of our tool.

Versioning Control Systems - Git

An important aspect of developing a software application is to provide a back-up strategy of

code and related materials. For this purpose, Git tool was used during the development of our

tool. Git is a version control system created by Linus Torvalds, which supply developers with

a mechanism to save code in a repository [34]. The repository is a database that saves

versions of the code, so developers can revert back to the previous versions. This mechanism

makes developers to have a strategy of backing up the code. Another feature of the tool is

distributed development, meaning that more than one developer can contribute in the

development of an application, with management methods provided by Git. These methods

are related with the security of the distributed code, fixing code versions or overwriting them.

Git can be used by command line or by an interface. There are many Git clients that can be

installed to use it in a graphical user interface. One of these clients is the popular, free GUI,

GitHub application [35]. It can be used as a standalone application or through its website.

The tool was developed in 2008, which uses the technologies provided by Git. It manages

repositories and keeps logs of source code. Our tool uses GitHub to store the source code and

keep versions of it. The repository can be accessed through the following link:

 38

https://github.com/ghadaayash/LETHE_web

OWL API

Described previously in Chapter 3, Section 3.2.

LETHE Library

Described previously in Chapter 3, Section 3.1.

Java Application Web Framework - Spring MVC

In order to provide an efficient web services that cope with the provided LETHE Java

library, Spring MVC [36, 37] model-view-controller has been used to build the system.

Spring MVC follows an architectural pattern that deals with the system as having three

different layers, which are presentation (UI), business (application logic) and database

(resource management). In MVC architectural pattern, the model part represents the

application logic layer. As MVC pattern does not represent the resource management layer, it

is encapsulated by the model layer. The view part of the pattern represents the view layer (the

presentation layer) of a system, which is the user interface. The user interface can be created

using various view technologies including JSP, Velocity templates or XSLT views. The

controller part of the pattern is responsible for handling events and requests conducted by the

user in the view layer. The controller part of the pattern represents the business layer of

systems architecture. The framework is request-driven, which uses a servlet that is

responsible for sending all of the requests to controllers. This servlet is called a

DispatcherServlet, which uses all of the features provided by the framework that makes it

easy to create web-based applications.

https://github.com/ghadaayash/LETHE_web

 39

Spring MVC framework features many advantages over other web frameworks, one

outstanding feature is Inversion of Control (IoC) or Dependency injection, which states that

objects do not rely on other objects in order to do a certain function [38]. Spring MVC is

completely integrated with Dependency Injection (DI) feature. DI means that Spring

framework uses assembler objects that assembles the different components of the system

without depending on other objects to do the job that could increase coupling between the

system components [38].

Another advantage of Spring MVC is the clear separation between the application layers that

includes controllers, views and models [36]. This provides the ability to develop applications

that is scalable and can be maintained in an independent way without making changes to the

other application layers.

Other than the mentioned features, Spring MVC was chosen in the development of the tool

because it provides comprehensive capabilities that helped in the achievement of the system’s

functionalities. One of these functionalities is using the MultipartFile interface provided by

the framework to upload ontology files to the server. Figure 4-2 demonstrates the system’s

components in the perspective of Spring MVC request processing workflow. The figure

shows the front controller (dispatcher servlet) which dispatches all of the requests made by

the client to the controllers. In addition, we can see three different controllers, in which each

one is responsible for a specific service that is provided by LETHE. The job of these

controllers is to create the corresponding requested data (model) along with handling the

requested URL that is triggered by the user. This data (model) can be in the form of the

resulting ontology, after it was computed by the concerned controller. The template view

represents the HTML code that is used to display the page.

 40

The request processing workflow is as follows:

1. The user interact with the UI, by requesting a certain URL, such as

localhost:8080/tl/logicaldifferences.html

2. The front controller (DispatcherServlet) delegates the request to the appropriate

controller (uniform interpolation, logical differences, or TBox abduction controller).

3. The concerned controller sends back the requested data (model) to the front controller

along with the suitable address of the template view, in this stage the controller can

get help from other classes (such as the ontology handler classes). This stage

represents the business layer of the application.

4. The front controller renders the response came by the controller to the concerned view

template (at the client side).

5. The involved view returns the control to the front controller, meaning that it returns

the HTML code mixed with the requested data.

6. The front controller sends the HTML code mixed with the requested data as a

response to the user (the client browser). This stage represents the presentation layer

of the application.

7. Finally, the browser displays the page.

 41

Figure 4-2: Illustration of the system's request processing workflow in Spring MVC

 42

View Layer Framework - Apache Tiles

The presentation layer of the tool was developed using the Apache Tiles framework [60]. The

framework was used for its provision of simplicity during the development of the user

interface views. It provides view templates that allow the developer to easily manage the

different user interface pages’ components. These templates are comprised of fragments that

pages are consists of. These fragments are then assembled during the runtime to form the

overall page. To create these templates, they are defined in the Tiles configuration file. Each

service in our system has its own template to make it easy to add its different view

specifications, including the title of the service page, the body and the footer. Figure 4-3

illustrates part of the Tiles configuration file that contains the definitions for each system

service. Taking the uniform interpolation page as an example, first, the template is created by

defining the page that contains the header and the footer, which is called “firstTemplate”.

Then, the page body and title are defined by creating another page that extends the

“firstTemplate”, which is called “UniformInterpolation”. As a result, we have three fragments

that form the uniform interpolation page: the title, the body and the footer.

Figure 4-3: Code snippet of the Tiles configuration file

 43

4.3 Use Cases’ Implementation

This section illustrates the main use cases’ implementation that is conducted by the server.

The presentation of these functionalities is classified according to the package to which they

belong. These packages include the controllers (uniform interpolation and logical differences

controllers), the LETHE package and the ontology handler package.

• The controllers package

The controllers package contains classes that represent the services’ controllers (uniform

interpolation, logical differences and TBox abduction) that were described previously in

Section 4.2. The following is a description of the main functionalities that each of the

controllers contain.

- handleRequest functionality

Each of the controllers contains the method of handling view requests triggered by the user.

For example, if the user requests the uniform interpolation page, it will be handled by the

function and returns the suitable requested address. Figure 4-4 illustrates the code for the

method that returns the view of the uniform interpolation page (UniformInterpolation.jsp).

Figure 4-4: Code of handleRequest method in uniform interpolation controller class

- uploading ontologies functionality

This function is responsible for uploading ontologies to the file server. The method is called

from the ontologyFile class, which is responsible for various ontology files functionalities,

such as uploading ontologies or saving the generated JSON file to be visualised by

webVOWL. Figure 4-5 shows the code for the uploadFile method exists in the ontologyFile

class.

 44

Figure 4-5: Code of uploadFile method in OntologyFile class

- populating uploaded ontology symbols

Both of the uniform interpolation and logical differences controllers contain the function of

populating ontology symbols. These ontology symbols are of type OWLEntity. The function

extracts ontology symbols that are of type object property and class from the set of

OWLEntity symbols. This is done by calling the method (getSignature) on the uploaded

ontology to get all of the ontology symbols. Then, an iteration over these symbols is

conducted to obtain only the class and object property symbols. After that, these symbols are

accumulated into a set of type OWLEntity symbols to be accepted by the uniform

interpolation and logical differences functionalities in the LETHE package. Figure 4-6

illustrates the code snippet for this function.

Figure 4-6: Code snippet for populating ontology symbols to the user

 45

- converting computed ontologies to JSON file

The function of converting the computed ontologies to a JSON file to be visualised by

webVOWL exists in each of the controllers. As webVOWL visualises ontologies by the

existence of their IRIs, the IRI is first extracted from the computed ontologies that are

obtained from uniform interpolation or logical differences. Then, the OWL2VOWL library

will take the new ontology and its IRI as parameters and return the JSON string. This JSON

string then is passed to a method that exists in the OntologyFile class that will return the

JSON file. The code snippet in Figure 4-7 illustrates the process of converting an ontology to

JSON using OWL2VOWL in order to visualise it in webVOWL.

Figure 4-7: Code snippet for converting an ontology to a JSON file

- passing JSON files to the view layer

For webVOWL to visualise the computed ontologies produced by our system, the name of

the corresponding JSON file is passed to the view layer. This name is combined with the

address of webVOWL’s tool so that it can visualise the ontologies. Section 4.4 describes the

integration mechanism between our tool and webVOWL. Figure 4-8 shows the code snippet

for passing a JSON file name to the view layer. For example, if the user clicks on the

visualise button to visualise a certain ontology, the name of its corresponding JSON file is

sent to the uniform interpolation page (in the view layer). The page contains the address of

webVOWL application which is http://ghtestapp.local/#test-ontology-iri-4. The “test-

ontology-iri-4” is the name of the JSON file that will be visualised by webVOWL. Figure 4-9

illustrates the page of webVOWL including the address of a JSON file being visualised.

http://ghtestapp.local/#test-ontology-iri-4

 46

Figure 4-8: Code snippet for passing a JSON file name to the view layer

Figure 4-9: Illustration of webVOWL visualising the "test-ontology-iri-4" file

• LETHE package

The package contains the implementation for each of the LETHE functionalities: uniform

interpolation and logical differences. Each function is represented by a class, as described

below:

- Uniform interpolation class

The class contains function for each of the forgetting methods including ALCH TBoxes, SHQ

TBoxes and ALC with ABoxes. The uniform interpolation for all of the forgetting methods

accepts two basic parameters, which are the input ontology and a set of OWLEntity objects

that represents the ontology symbols. These symbols are extracted from the uploaded

ontology (input ontology). Figure 4-10 illustrates the uniform interpolation for ALCH

 47

TBoxes method. The method returns a value of type OWLOntology, which is the computed

ontology.

Figure 4-10: Code for ALCH TBoxes interpolation in uniform interpolation class

- Logical differences class

The logical differences function is conducted similarly to the uniform interpolation function,

as it is computed as the uniform interpolant of a certain set of symbols. This set of symbols

can be common (shared between the two ontologies) or specified by the user. Each method of

the class represents a certain forgetting method and the logical differences option, which can

be based on common or specified symbols. Figure 4-11 illustrates the function that computes

logical differences by interpolating for ALCH TBoxes. The function accepts three

parameters: the first ontology, the second ontology and the approximation level. This function

computes the logical differences based on common symbols between the two ontologies.

In cases in which the user would like to specify a set of symbols, another function will be

performed, which is illustrated in Figure 4-12. This function is similar to the previous one.

However, it takes an additional parameter, which is the set of symbols. The symbols

(signature) are OWLEntity symbols. The method returns a set of axioms

(OWLLogicalAxiom), which are then stored in an OWL file using a function exists in the

ontology handler package.

Figure 4-11: Code for the method that computes logical differences based on the ALCH TBoxes forgetting method (common
symbols)

 48

Figure 4-12: Code for the method that computes the logical differences based on the ALCH TBoxes forgetting method
(specified symbols)

• Ontology handler package

This package contains methods that are concerned with saving ontology files or reading

them. Saving the computed ontologies in the file server is important for the user to be able to

download them. Figure 4-13 shows the method that saves the computed ontologies by

uniform interpolation. The saving is performed by the use of the OWLOntologyManger

object that contains the method of saving ontologies to a certain directory. The method uses

three parameters: the resulting ontology, the syntax of the ontology to be saved and a method

that creates the IRI for the resulting ontology. The third parameter is important to convert the

computed ontology to a JSON file that is visualised by webVOWL.

Figure 4-13: Code for the method that saves ontologies computed by uniform interpolation

The function of saving OWL logical axioms that are obtained from the logical differences

functionality is conducted by creating a new ontology file. The manager adds the set of the

obtained axioms to the new ontology file. After that, the manager saves the new ontology to

the file system directory. Figure 4-14 illustrates the code snippet for saving a set of OWL

logical axioms in an OWL file.

 49

Figure 4-14: Code for the method that saves ontologies computed by logical differences

4.4 System Integration

This section describes the integration mechanisms between LETHE, Spring MVC and

webVOWL. It starts by briefly describing the integration between the LETHE library with

Spring MVC framework. Then, a description of the backend of webVOWL is provided. In

addition, an overview about the mechanism used in the integration between webVOWL and

LETHE_web is presented.

The integration of LETHE within Spring MVC framework was straight forward as the

LETHE Library is a Java based library. It was conducted by including the LETHE library

into the project structure along with its dependencies. The LETHE library has many

dependencies in order to work. Two important dependencies are the OWL API and the

HermiT reasoner [28]. The reasoner was used for the role restriction resolution rule,

specifically in the forgetting of roles in ALC and ALCH DLs [39]. This integration has

accumulated in a web application that uses the services of the LETHE library. In order to

distinguish the web application form other technologies used to build the system, it has been

called LETHE_web.

 50

webVOWL is an open source web application developed to provide an implementation of

VOWL language for visualising ontologies. The application was developed using open web

technologies on the client side. NodeJs must be used in order to install webVOWL for

development purposes. NodeJs is a server that runs applications that uses JavaScript

technologies [40]. NodeJs is suitable for running applications that mainly depends on open

web standards, which acts as the backend of these applications.

In order to integrate webVOWL with LETHE_web for the visualisation of the resulting

ontologies computed by the latter application, Nginx server was used, which is an HTTP

server and a reverse proxy [41]. It has been used for the second feature provided by it which

is reverse proxy. Reverse proxy means to obtain resources and information from another

server. The proxy server then returns these resources from the other server to the client (the

user) as if it was being generated from the proxy server itself [42]. Nginx server was suitable

to be used for the purpose of linking between the tomcat server, which is the one used in

LETHE_web system, and the NodeJs, which is the server used to run webVOWL. This

methodology helped in completely using the resources provided by webVOWL in order to

visualise the resulting ontologies.

Figure 4-15 shows a close illustration of the integration between tomcat server and

webVOWL by using Nginx server in the middle of the two servers. The operation is

conducted by writing specific Nginx configurations that permits the running of an HTTP web

application, which is webVOWL in our case. After the writing of Nginx configurations,

LETHE_web is configured to open the URL addresses of the HTTP application

(webVOWL). The configuration of LETHE_web takes place by including (visualise) links

that refers to the webVOWL application. For example, to visualise a certain ontology the user

would normally click on the visualise button to visualise it in webVOWL. Thanks to Nginx

server, webVOWL shows the graphical representation of the ontology as if it was integrated

natively with our system.

 51

Figure 4-15: The system integration using Nginx server between Tomcat and NodeJs servers

4.5 Summary

The design and implementation processes began by identifying the functional requirements of

the system, which includes defining the use cases conducted by the client and the server. The

implementation platforms that were used during the development are necessary to be suitable

with the application’s requirements. Spring MVC is the backbone of the system’s

development process. The framework is request-driven that depends on a servlet which sends

requests to the controllers. The process of our system’s request workflow was identified in

order to implement a system that functions accordingly. The main use cases implementation

was described. Lastly, the integration mechanism between LETHE_web and webVOWL

has been chosen according to the systems’ servers requirements, which is described in

Section 4.4.

 52

5 System Testing and Illustration

In this chapter, an illustration of the system methods is provided. The illustration of using the

system services are also presented in Section 5.2.

5.1 System Testing

System testing is a crucial phase of a software development. Through it we can be certain that

the implemented system works as expected and functions in the right way. The purpose of the

testing phase is to ensure that the system is free from faults. Therefore, our system was tested

against two types of testing, which are unit testing and manual testing.

Unit Testing (White box testing)

The purpose of unit testing is to be certain that all of the methods behave according to the

specified requirements. It is a type of white box testing, in which the developer tests the

source code of an application line by line [43]. Unit testing is conducted by testing the

smallest component of a portion of code, which is usually a method that accepts input

parameters and return an output (return value). This kind of testing is suitable for a test driven

development (TDD) methodology. In our tool, JUnit framework was used, which is a well-

known testing framework that is used to test code written in Java language. It can be used for

testing many types of components including web components [44].

The purpose of unit testing is to make sure that each function of the system works correctly.

The tests were conducted against the following system packages

- Controllers

- LETHE

- Ontology Handler

The controllers package was tested against the handling of HTTP requests and responses,

meaning the correctness of showing the intended view or page that corresponds to a certain

controller. For example, the uniform interpolation controller should show its corresponding

page (view) which is UniformInterpolation.html.

 53

LETHE package included the functionalities of uniform interpolation, forgetting and logical

differences. Each of them represents a class, which have many functions that correspond to a

forgetting method. The testing involved each function of every class. The ontology handler

package has many functionalities including uploading, saving and reading ontologies. Table 1

shows the category of tests, purpose, the number of tests and its outcome. Figure 5-1

illustrates the running of tests after it was accumulated into a test suite.

Category Purpose Number of tests Outcome

Controllers package To check the

correctness of handling

HTTP requests.

8 Pass

LETHE package To check the

correctness of

processing LETHE

functionalities in our

tool.

12 Pass

Ontology Handler To test the different

functionalities of

handling ontologies

including uploading and

saving them.

11 Pass

Table 1: Summary of the unit tests performed on LETHE_web

Figure 5-1: Illustration of tests under running in Intellij performed on LETHE_web

 54

Moreover, print statements were included in order to check that the output results are

accomplished in the intended way. Table 2 shows the categories of manual tests conducted as

well as its outcomes.

Category Purpose Number of tests Outcome

Uploading/ saving

ontology files

To be certain the correct

ontology was uploaded

or saved to the file

system

2 Pass

Populating ontology

symbols/ selection of

ontology symbols

To be certain the correct

set of symbols were

populated based on the

uploaded ontology as

well as the correct

selection of symbols

2 Pass

The input parameters To be certain the correct

parameters were

inserted into the system

3 Pass

Table 2: Summary of the print statements tests performed on LETHE_web

Manual tests (Black box testing)

Manual testing is the process of testing the system after it is built. It involves the developer or

the tester to test the application as an end user. It is a type of black box testing, meaning that

the source code of the system being under test is not shown, as if the system is a black box

[43]. Many test cases have been considered while manually testing the system including the

variety of input parameters such as ontologies, symbols, forgetting methods, modes, the

easiness of dealing with the user interface and the correctness of the results. The results of

performing manual tests helped in identifying the systems defects and clarified areas that can

be improved.

 55

5.2 LETHE Web-Analyser: System Illustration

This section illustrates the use cases of the system that the user performs. These use cases

include using uniform interpolation and logical differences services. The section starts by

presenting the uniform interpolation interface, the logical differences interface and

webVOWL interface.

5.2.1 Uniform Interpolation Interface

The index page is shown in Figure 5-2. It contains links for each of the system’s

functionalities which are uniform interpolation, logical differences and TBox abduction. The

implementation of TBox abduction is partially conducted. Therefore, the focus of this

description is regarding uniform interpolation and logical differences. It can be seen that the

interface is simply designed, with clear headings and fonts.

 Figure 5-2: Main Page of LETHE Web Analyser

 56

Figure 5-3 illustrates the overall uniform interpolation page. In the page, the steps of applying

the function are clearly shown with numbers. This provides simplicity and clarity to the user

when using the tool.

Figure 5-3: The overall page of uniform interpolation interface

 57

To describe each use case of the uniform interpolation / forgetting page, an example of using

a simple ontology is given. The ontology was developed by Nick Knouf for the purposes of

describing BibTeX tool terms [45]. BibTex is a well-known tool used to list references in a

certain format. The ontology provides small set of classes that describes the entries used in

BibTex tool [46, 47]. Some of the main terms are Book, Manual, MasterThesis and

Proceedings.

The first step is uploading the ontology (Figure 5-4). After uploading the ontology, the

axioms of the ontology can be browsed from the ontology axioms box. Also, the user can

press on Visualise button in order to visualise the ontology in webVOWL. webVOWL

interface is presented in Section 5.2.3.

Figure 5-4: First Step (upload ontology) in uniform interpolation page

 58

The second step is selecting the mode of the computation, which can be either forgetting or

uniform interpolation (Figure 5-5). The differences between the two modes is in the inclusion

of symbols, meaning that if the forgetting mode is chosen, then the purpose of choosing

symbols is to eliminate axioms that contains those symbols. While in uniform interpolation

mode, the resulting ontology axioms are limited to the chosen symbols. The third step is

choosing the forgetting method (ALCH TBoxes, SHQ TBoxes or ALC with ABox) (Figure 5-

5).

The fourth step is selecting the symbols in order to perform the computation based on them.

The select symbol box is accompanied with a search box, in which the user can start typing a

certain symbol and the symbols will be filtered according to the typed characters. Figures 5-6

and 5-7 illustrate the concept. After the selection of symbols takes place, the user can click on

“Compute Uniform Interpolant” button in order to start the computation of producing a

restricted view ontology. Figure 5-8 illustrates the set of chosen symbols and the resulting

ontology.

Figure 5-5: Steps 2 (select mode) and 3 (select forgetting
method) in uniform interpolation page

Figure 5-6: Step 4 (select symbol) in uniform
interpolation page

 59

Moreover, the resulting ontology can be downloaded as OWL/XML format and visualised

using webVOWL. Figure 5-9 shows the buttons for the aforementioned functions, which are

located under the resulting ontology box.

Figure 5-7: (Visualise) and (Download as OWL/XML) buttons located under
resulting ontology box in uniform interpolation page

Figure 5-6: Resulting ontology after the selection of
symbols in uniform interpolation page

Figure 5-5: Symbols filtration in Step 4 in uniform
interpolation page

 60

The last optional step is to perform further computation of uniform interpolation / forgetting

functionality (Figure 5-10). This step is applied to the last ontology computed. Thus, the

symbols are extracted from the last resulting view, and the select symbols box is refreshed

with the symbols occurring in that view. Figure 5-10 illustrates the uploaded ontology

information, which is the ontology name, the number of symbols that the ontology contains,

the number of axioms, the number of logical axioms and the number of selected symbols.

The ontology name is the name of a .owl file. The number of symbols is the number of

entities that are of type OWLClass or OWLObjectProperty that the ontology contains. The

number of axioms is the axioms count of the ontology, while the number of logical axioms is

the number of axioms that are neither declaration axioms nor annotation axioms [48]. Lastly,

the number of selected symbols is the number of the symbols that were selected by the user.

Figure 5-8: Ontology information section and fifth step (further
computation) in uniform interpolation page

 61

5.2.2 Logical Differences Page

The second main page of our web browser is the logical differences page. There are six steps

required by the user in order to use the function. The first and second steps involve uploading

the first and second ontology, which are shown in the steps (1 and 2) of Figure 5-11. After the

uploading of ontologies, the user can press on “Visualise first ontology” or “Visualise second

ontology” buttons in order to use webVOWL for the visualisation of the first and second

ontologies. The third step is to choose the logical differences mode of computation, which

can be either based on common symbols that the two ontologies share, or on specific symbols

(Step 3 in Figure 5-11). If the user selects the specific symbols option, then the logical

differences of the two ontologies are computed based on the second ontology’s symbols. The

fourth step is to select the forgetting method that is used during the computation of logical

differences (Step 4 in Figure 5-11). The fifth step is selecting symbols, which is illustrated by

Step 5 in Figure 5-11. This step depends on the third step, if the user selected common

symbols option, then this step is skipped.

The last step is to specify the approximation level, which is specified by a given number

(Step 6 in Figure 5-11); this number determines the level of approximation of logical

differences in case the uploaded ontologies are cyclic. In addition, the information of the

uploaded ontologies is displayed. Afterwards, the user can press the “Compute logical

differences” button to start the process of computing the logical differences between the two

ontologies. The ontology obtained can be downloaded as an OWL/XML file or it can be

visualised using webVOWL. Concrete example of logical differences is given in a case study

presented in Chapter 6, Section 6.2.

 62

Figure 5-9: The overall page of logical differences interface

 63

5.2.3 webVOWL Interface

The use cases of webVOWL interface are mainly to browse the ontologies and interact with

the nodes and edges of the graph of the ontology. Figure 5-13 illustrates the overall page of

webVOWL. It shows the graph of the Bibtex ontology that we have used in the illustration of

uniform interpolation use cases. The interface is divided to two main sections. The first

section holds the graphical representation of the ontology, and the second section represents

the ontology information. Moreover, there is a thin tool bar in the bottom of the page that

holds controllers including Export, Gravity, Filter, Modes, Reset and Pause. The most

important controller is the export menu, in which the user can export the graph as JSON or

SVG files. In the second section of the interface we have five subsections that include the

ontology title, description, metadata, statistics and selection details.

The title subsection encloses more detailed information such as the version number of the

ontology, the authors and the language in which it was written. The description sub-section

presents short description of the ontology. The metadata represents the information that is

extracted from annotation axioms in the ontology (Figure 5-12). The existence of the

information of these sections depends on the uploaded ontology specifications.

The statistics subsection shows statistics about the ontology’s classes, object properties, data

properties, individuals, nodes and edges numbers of the graph. The selection details

subsection clarifies information about the selected node in the graph.

Figure 5-10: Metadata subsection
of webVOWL interface

 64

Figure 5-11: The overall page of webVOWL interface showing the visualisation of bibtex ontology

 65

5.3 Summary

This chapter presented the testing methodologies used to test the system. These methods

include unit testing and manual testing. They both ensure efficiency and validation of the

system to function properly. The description of the system’s use cases with regard to its

services was provided.

 66

6 Case Studies

This chapter presents case studies of uniform interpolation and logical differences

functionalities. The purpose of the case studies is to evaluate the aforementioned

functionalities and to illustrate their usefulness. The case studies also involved analysing of

the resulting ontologies. In addition, a comparison between VOWL Library and visualisation

library OntoGraf, provided by Protégé, is presented in Section 6.3. Moreover, the chapter

presents a comparison of our system with mentioned modularisation tool (PATO) in Section

6.4

6.1 Uniform Interpolation and Forgetting Case Study

The following case studies were conducted in order to illustrate the evaluation results of each

of the system’s functionalities. Each of the case studies (uniform interpolation / forgetting

and logical differences) consists of the following elements:

• The specified functionality of the system.

• The ontology background.

• The parameters inserted to evaluate the function.

• The resulting ontology based on the input parameters.

• Discussion of the results considering the following:

o Whether the result corresponds with LETHE’s outcomes.

o Whether the result can be clearly illustrated using webVOWL.

o The usefulness of the result to the user.

• Conclusions

This case study is focused on evaluating the core functionality of the system which is uniform

interpolation. This function aims to produce a restricted view of an ontology with the

preservation of all of its logical entailments. The ontology that has been chosen in order to

clearly illustrate the outcomes is the travel ontology.

The travel ontology was developed by Holger Knublauch [49]. It contains common terms that

relate to travelling. The travel ontology contained five main concepts, which are

accommodation, accommodation rating, activity, contact and destination. These concepts are

 67

classes that have subclasses. The existence of subclasses makes us have more specified and

clarified concepts. For example, the Activity class consists of four subclasses which are

Adventure, Relaxation, Sightseeing and Sports. The activity class describes the type of

activities that a person might perform during a trip or a holiday. The ontology also describes

the concepts of the type of destination that someone might seek. Some of these destinations

are: BackpackersDestination, Beach, BudgetHotelDestination and FamilyDestination. All

of the aforementioned destinations are subclasses of the class Destination. In addition, the

ontology includes six object properties, which are hasAccommodation, hasActivity,

hasContact, hasRating and isOfferedAt. The ontology was created with the well-known

editor, Protégé for tutorial purposes. The expressivity of it is ALC extended with role

hierarchies, transitive roles, nominals, inverse properties and cardinality restrictions

(SHOIN).

In order to apply our system to the travel ontology, we consider a restricted view of the

ontology based on the destinations symbols. Suppose the user in this case selects the

following symbols:

- the Destination class, and

- the sub-classes:

o BackpackersDestination

o Beach

o BudgetHotelDestination

o FamilyDestination

o QuietDestination

o RetireeDestination

o RuralArea

 Farmland sub-class of RuralArea

 NationalPark sub-class of RuralArea

o UrbanArea

 City sub-class of UrbanArea

• Capital sub-class of City

 Town sub-lclass of UrbanArea

 68

The chosen mode was uniform interpolation, meaning that the resulting ontology contains

axioms that are in the scope of the chosen symbols. The forgetting method that was used was

the one for ALCH TBoxes.

After the input parameters were specified, which are the travel ontology, the above symbols,

the uniform interpolation mode and the forgetting method (ALCH TBoxes), the resulting

ontology is produced. Figure 6-1 shows the computed ontology in a readable format. Figure

6-3 shows the webVOWL visualisation of the restricted view ontology, which is based on the

destinations symbols. A number of classes can be seen in the graph, including Town and City,

which are subclasses of UrbanArea, NationalPark is a subclass of RuralArea, and

UrbanArea and RuralArea are subclasses of Destination class.

Figure 6-1 shows that the computed ontology is excluded from axioms that involve object

properties, which are hasAccommodation, hasActivity, hasContact, hasPart, hasRating

and isOfferedAt. Some of these object properties are not related to the chosen symbols that

are based on destination concepts. However, the hasPart property relates to the Destination

class, which can be seen in the original ontology axioms (Figure 6-2). These axioms are

∃hasPart.⊤ ⊑ Destination, meaning that a hasPart property exists in Thing class which is a

subclass of Destination class and the axiom ⊤ ⊑ ∀hasPart.Destination which means that all

of the hasPart property values are in the Destination class which the Thing class is part of.

The reason of not including properties in the resulting ontology is because ALCH TBoxes

forgetting method supports the forgetting of roles (object properties) [2] and object properties

were not chosen to be included in the restricted view.

Figure 6-1: The resulting ontology based on ALCH
TBoxes forgetting method (uniform interpolation
mode)

Figure 6-2: Some of the travel original ontology axioms

 69

Figure 6-3: webVOWL visualisation of the resulting ontology based on ALCH TBoxes forgetting method (uniform interpolation mode)

 70

In case the object properties that have relationships with destination terms were included,

then the results will include the chosen properties. Figure 6-4 illustrates the resulting

ontology after including the properties: hasAccommodation, hasActivity, hasPart and

isOfferedAt.

Figure 6-4: The resulting ontology based on ALCH TBoxes forgetting method after inlcuding object properties (unifrom
interpolation mode)

If we use the forgetting method for SHQ TBoxes, then the resulting ontology contains some

object properties that the ontology has. As SHQ TBoxes forgetting method does not support

the forgetting of object properties, there was no attempt made by LETHE to eliminate roles.

The computed ontology is shown in Figure 6-5 in readable format. The figure shows the

axiom

(BackpackersDestination ⊓ Capital) ⊑ ⩾2hasActivity.⊤

This axiom means that the result of the disjointness between BackpackersDestination and

Capital is part of the restriction on the property hasActivity that has two minimum

cardinalities in the Thing class. In another words, the result of the intersection of

BackpackersDestination and Capital classes implies that there at least two activities in the

Thing class. Another axiom from the resulting ontology is

FamilyDestination ⊑ (⩾2hasActivity.⊤ ⊓ Destination ⊓ ∃hasAccommodation.⊤)

 71

This axiom means that a FamilyDestination should have at least two activities and an

accommodation.

 Figure 6-5: The resulting ontology based on SHQ TBoxes forgetting method (uniform interpolation mode)

The following figure (Figure 6-6) illustrates the graph of the resulting ontology in

webVOWL after applying SHQ TBoxes forgetting method. The figure shows that the

statistics shown by webVOWL include four object properties, which are

hasAccommadation, hasActivity, isOfferedBy and the transitive property hasPart.

However, the computed view did not include hasRating and hasContact properties that the

original ontology has, as both of them do not relate to the Destination class, and this was

conducted as a consequent of forgetting concepts that do not involve the Destination

symbols. This can be seen in the axioms from the original ontology:

⊤ ⊑ ∀hasRating.AccommodationRating

∃ hasRating.⊤ ⊑ Accommodation

∃ hasContact.⊤ ⊑ Activity

⊤ ⊑ ∀hasContact.Contact

 72

Figure 6-6: webVOWL visualisation of the resulting ontology based on SHQ TBoxes forgetting method (uniform interpolation mode)

 73

Selecting the forgetting method for ALC with ABoxes resulted in a restricted view ontology

that contains individuals, as this forgetting method also supports ABox axioms in the

ontology. Figure 6-7 illustrates the axioms of the ontology in readable format. Some of the

axioms including Beach(BondiBeach) and Beach(CurrawongBeach) implies that

BondiBeach and CurrawongBeach are members of the class Beach which is a sub-class of

the Destination class. The resulting view excluded properties as this forgetting method

supports forgetting of them. The subsequent figure illustrates the graph of the resulting

ontology in webVOWL after applying ALC with ABoxes forgetting method (Figure 6-8). The

statistics section of webVOWL interface shows the number of individuals included in the

ontology is 13. Also, the individuals in the visualisation of webVOWL are represented by

numbers. For example, the class Destination has three members (individuals). The number is

seen in the middle of the class Destination node in the graph.

Figure 6-7: The resulting ontology based on ALC with ABoxes forgetting method (uniform interpolation mode)

 74

Figure 6-8: webVOWL visualisation of the resulting ontology based on ALC with ABoxes forgetting method (uniform interpolation mode)

 75

The following table summarises the results of applying the three forgetting methods on the

travel ontology using uniform interpolation mode (Table 3). The axioms of the results were

divided to two categories, similar and noticeably different axioms that distinguish the results

of a certain forgetting method from the other.

Forgetting Method Similar resulting axioms among

all forgetting methods

Resulting noticeably different axioms

ALCH TBoxes - (RuralArea ⊓ UrbanArea) ⊑
⊥

- BackpackersDestination ⊑
Destination

- Beach ⊑ Destination
- BudgetHotelDestination ⊑

Destination
- Capital ⊑ City
- City ⊑ UrbanArea
- Destination ⊑

(QuietDestination ⊔
FamilyDestination)

- Farmland ⊑ RuralArea
- NationalPark ⊑ RuralArea
- RuralArea ⊑ Destination
- Town ⊑ UrbanArea
- UrbanArea ⊑ Destination

- (QuietDestination ⊓
FamilyDestination) ⊑ ⊥

- QuietDestination ⊑ Destination
SHQ TBoxes - (BackpackersDestination ⊓

Capital) ⊑ ⩾2hasActivity.⊤
- (BudgetHotelDestination ⊓

NationalPark) ⊑
⩾2hasAccommodation.⊤

- (City ⊓ NationalPark) ⊑
⩾2hasAccommodation.⊤

- trans(hasPart)

ALC with ABoxes - Beach(BondiBeach)
- Beach(CurrawongBeach)
- Town(Coonabarabran)

Table 3: Summary of the resulting axioms of all forgetting methods (uniform interpolation mode)

The table shows that the restricted view computed using ALCH TBoxes method includes two

axioms not obtained with the other methods. The first axiom says the intersection of

QuietDestination class and FamilyDestination class is part of the Nothing class. In other

words, the two classes are complements to each other (each one negates the other) since they

are part (sub-classes) of the Nothing (⊥) class. This axiom clearly illustrates a TBox axiom.

In addition, in case the user does not specify object properties to be included in the computed

ontology, then the method excludes all of the object properties of the original ontology from

the resulting view. This is the case for ALC and ALCH DLs.

Moreover, it is noticeable that the information obtained by SHQ TBoxes forgetting method is

more detailed and precise. This is because SHQ is the most expressive language among

ALCH and ALC, which illustrates that LETHE exploits this additional expressivity to

express and capture more for this case than the other two cases. For example, the axiom

(City ⊓ NationalPark) ⊑ ⩾2hasAccommodation.⊤

 76

means that there are at least two accommodations in the result of intersecting City and

NationalPark classes. Finally, the results of the ALC with ABoxes mode generally include

ABox axioms. This is shown in the axiom Town(Coonabarabran), which means that

Coonabarabran is a member of the class Town.

The computed uniform interpolants exclude RetireeDestination, which is a subclass of

Destination while using all of the three forgetting methods. This is because

RetireeDestination includes an individual ThreeStarRating in its equivalent axiom. The

ThreeStarRating in this case represents a nominal constructor. LETHE Library excludes

axioms that contain nominals as this case does not cope with LETHE’s functionality of

producing uniform interpolants or when forgetting axioms (in the forgetting mode).

The second mode is forgetting, in which the axioms that represent concepts based on the

selected symbols are eliminated from the ontology. Thus, the resulting ontology is a restricted

view ontology that contains axioms outside the scope of the chosen symbols. In addition to

the destination symbols that we applied in uniform interpolation mode, concepts based on

accommodation symbols were chosen as well. The Accommodation symbols are as follows:

- the Accommodation class, and

- the sub-classes:

o BedAndBreakfast

o BudgetAccommodation

o Campground

o Hotel

 LuxuryHotel subclass of Hotel

- the AccommodationRating class, and

- the hasAccommodation object property

The information in the resulting ontology was related to Activity and Contact symbols which

represent description of the activities that can be done during a trip, including adventure

activities such as Bunjee jumping or safari, relaxation activities including sunbathing and

yoga activities, and sightseeing activities. These concepts represent the remaining symbols of

the ontology (that were not chosen by the user).

 77

First, the ALCH TBoxes forgetting method was chosen, in which the resulting ontology

included object properties (hasActivity, hasContact, isOfferedAt), and the class Activity

and its subclasses including Adventure, Sports, and the Contact class. The inclusion of these

object properties is due to their relation to the Activity and Contact classes. However, it has

forgotten the rest of the object properties (hasAccommodation, hasPart and hasRating) as

they are involved in the Accommodation and Destination symbols, which are symbols that

were chosen to be forgotten. In addition, forgetting of object properties took place because of

the aforementioned reason of its support of object properties forgetting. The resulting

ontology and its graph are shown in Figures 6-9 and 6-10, respectively.

Figure 6-9: The resulting ontology based on ALCH TBoxes forgetting method (forgetting mode)

 78

Figure 6-10: webVOWL visualisation of the resulting ontology based on ALCH TBoxes forgetting method (forgetting mode)

 79

Second, the SHQ TBoxes forgetting method was chosen. The resulting ontology included

five of the object properties that the travel ontology has, which were hasActivity,

hasAccommodation, hasPart, hasContact and isOfferedAt. This is because of the

aforesaid reason of this forgetting method not supporting role forgetting. However, it has

forgotten the property hasRating, as this was a side effect of forgetting the concepts

Accommodation and AccommodationRating, which are symbols that appear in all axioms

that contain hasRating.

∃hasRating.⊤ ⊑ Accommodation

⊤ ⊑ ∀hasRating.AccommodationRating

The view also included the concepts that relate to Activity class such as Relaxation and its

sub-class Yoga, and Sightseeing and its sub-classes Safari and Museums, as well as the

Contact class. The resulting ontology is shown in Figure 6-11 in a readable format. The graph

of the resulting ontology is illustrated in Figure 6-12.

Figure 6-11: The resulting ontology based on SHQ TBoxes forgetting method (forgetting mode)

 80

Figure 6-12: webVOWL visualisation of the resulting ontology based on SHQ TBoxes forgetting method (forgetting mode)

 81

Third, the ALC with ABoxes forgetting method was chosen. Most of the axioms in the

resulting ontology are similar to the result of ALCH TBoxes forgetting method. In addition, it

included ABoxes axioms that involve individuals. Some of them are

∃hasActivity.Hiking(BlueMountains) and ∃hasActivity.Museums(Sydney). The axioms

mean that there is a hiking activity in BlueMountains and there is a museum activity in

Sydney. The ontology also included all of the individuals as part of the Thing class, which

can be seen in axioms such as ⊤(BlueMountains), ⊤(FourSeasons) and ⊤(Woomera). This

can be useful for determining the different individuals in the ontology. Figure 6-13 illustrates

the resulting ontology in a readable format. The visualisation of the obtained ontology is

shown in Figure 6-14.

Figure 6-13: The resulting ontology based on ALC with ABoxes forgetting method (forgetting mode)

 82

Figure 6-14: webVOWL visualisation of the resulting ontology based on ALC with ABoxes forgetting method (forgetting mode)

 83

Table 4 summarises the resulting axioms of applying the forgetting mode on the travel

ontology. These axioms are the results of using all of the forgetting methods. The axioms

were divided to two categories, similar axioms among the results of all of the forgetting

methods and noticeably different ones.

Forgetting

Method

Similar resulting axioms

among all forgetting methods

Resulting noticeably different axioms

ALCH TBoxes - (Adventure ⊓ Relaxation)
⊑ ⊥

- (Adventure ⊓ Sightseeing)
⊑ ⊥

- (Adventure ⊓ Sports) ⊑ ⊥
- (Relaxation ⊓

Sightseeing) ⊑ ⊥
- (Relaxation ⊓ Sports) ⊑ ⊥
- (Sightseeing ⊓ Sports) ⊑

⊥
- Adventure ⊑ Activity
- BunjeeJumping ⊑

Adventure
- Hiking ⊑ Sports
- Museums ⊑ Sightseeing
- Relaxation ⊑ Activity
- Safari ⊑ Adventure
- Safari ⊑ Sightseeing
- Sightseeing ⊑ Activity
- Sports ⊑ Activity
- Sunbathing ⊑ Relaxation
- Surfing ⊑ Sports
- Yoga ⊑ Relaxation
- ∃hasContact.⊤ ⊑ Activity
- ∃isOfferedAt.⊤ ⊑ Activity
- ⊤ ⊑ ∀hasActivity.Activity
- ⊤ ⊑ ∀hasContact.Contact

None

SHQ TBoxes - trans(hasPart)
- ∃hasAccommodation.⊤ ⊑

(∃hasAccommodation.⊤ ⊔
⩽1hasActivity.⊤)

- ∃hasAccommodation.⊤ ⊑
(⩾2hasActivity.⊤ ⊔ ⩽1hasActivity.⊤)

ALC with

ABoxes

- ∃hasActivity.Hiking(BlueMountains)
- ∃hasActivity.Hiking(Warrumbungles)
- ∃hasActivity.Museums(Canberra)
- ∃hasActivity.Museums(Sydney)
- ⊤(BlueMountains)
- ⊤(BondiBeach)
- ⊤(Cairns)
- ⊤(Canberra)
- ⊤(CapeYork)
- ⊤(Coonabarabran)
- ⊤(CurrawongBeach)
- ⊤(FourSeasons)
- ⊤(OneStarRating)
- ⊤(Sydney)
- ⊤(ThreeStarRating)
- ⊤(TwoStarRating)
- ⊤(Warrumbungles)
- ⊤(Woomera)

Table 4: Summary of the resulting axioms of all forgetting methods (forgetting mode)

The table shows that the ALCH TBoxes forgetting method did not compute any axioms that

are not included in the results of SHQ TBoxes and ALC with ABoxes forgetting methods.

The axioms are TBox axioms that define classes and properties related to Activity symbols.

The result of applying SHQ TBoxes included axioms that contained the transitive property

hasPart and cardinality restrictions. Finally, ALC with ABoxes forgetting method gave

results that include ALC TBoxes along with ABoxes which consists of classes and properties

that have members.

We can conclude from the results obtained by using uniform interpolation and forgetting

functionalities that they cope with LETHE’s expected outcomes. The forgetting method for

 84

ALCH TBoxes gave us results that involve TBoxes for the expressive language ALCH. In

addition, the forgetting method for SHQ TBoxes gave results that are more expressive and

detailed than ALCH and ALC languages. Finally, the application of ALC with ABoxes

forgetting method has resulted in axioms that involve members, since this method interpolate

for ALC TBoxes as well as knowledge bases (ABoxes). In addition, webVOWL

representation of the restricted view ontology makes it easy for the user to distinguish the

different concepts that corresponds with a certain forgetting method. This is shown by

navigating the ontology graph, and the statistics section give information about object

properties and individuals numbers.

6.2 Logical Differences Case Study

This case study was conducted to evaluate one of the uniform interpolation applications,

which is logical differences. Logical differences functionality seeks to compute the

differences between two ontologies. The user can choose to compute the logical differences

between two ontologies either over common symbols that are shared between them, or

specified ones. The computation of logical differences is done by reasoners which determine

the entailments of axioms. The axioms that are not entailed by the first ontology are

determined as new entailments among the two ontologies. The purpose of the function is to

identify any entailments of an ontology that does not follow from the other one. In this case,

we are interested in the entailments of the second (old version) ontology that do not follow

from the first (new version) one.

In order to show the usefulness of using logical differences functionality, the Semantic Web

for Research Communities (SWRC) ontology [50] was used. The ontology was developed in

order to structure the research communities’ concepts and their related terms including

publications and bibliographical information. The SWRC ontology was first developed using

various description logic languages including DAML+OIL and RDF(S) languages. Then,

they have redeveloped it in its recent versions using OWL format. The ontology consists of

six main concepts, which are Project, Topic, Event, Organisation, Person and Publication.

Figure 6-15 illustrates the structure of the main ontologies concepts [50]. The total number of

the ontology concepts is 53, which are presented in a taxonomy, and 20 object properties, in

 85

which 10 of them are used in inverse object properties. In addition, there are a number of

annotation axioms that describe the ontology concepts.

The Person class describes human and it is conceptualised by sub-classes including Student

and Employee. The Event class describes events such as Conference or Lecture, which are

subclasses of Event. The Topic class describes some types of topics such as ResearchTopic,

which is a subclass of the Topic class. The Organisation class models the abstract concept of

an organisation that has departments through the use of the subclass Department, or the

conceptualisation of different types of organisations such as Enterprise. The Project class

describes some types of projects such as DevelopmentProject or ResearchProject which are

subclasses of the Project class. The Publication class describes the different types of

publications which are in correspondence with the BibTeX references type. Some of the

subclasses that are under the Publication class are Article, Book and InProceedings [50].

Figure 6-15: SWRC Ontology main concepts structure [50]

The ontology expressivity is OWL-DLP, in which DLP stands for Description Logics

Programming [51]. OWL-DLP languages were designed to fill the gap between logic

programming and an expressive semantic web language like description logics. According to

Vrandecic [51], “it lies within the intersection of description logics and logic programming”.

In addition, it provides the expressivity of OWL DL language and serves the purposes of

 86

developing future semantic programmes [52]. It has been used in the development of the

SWRC ontology for the benefits that it provides and for its sufficient expressivity of

describing the ontology concepts.

The ontology has two different versions available in the ontology website [53]. For the

purpose of evaluating the functionality of logical differences in our tool, the two versions

were used. These versions are 0.3 and 0.7.1 and both of them are in the OWL format. The

earlier version is 0.3, which lacks annotation axioms that help in providing description of the

ontology axioms. Moreover, the newer version which is 0.7.1 included many improvements.

If we compare it with the older version, we notice that new classes have been introduced in

the recent version, such as Document class. The Document class is the super class of

Publication and Unpublished classes. This is not the case with the earlier version (0.3) in

which the Unpublished class is a subclass of Publication. The two versions included many

other differences that can be determined using the logical differences functionality.

First, the old version ontology elements are visualised using webVOWL (Figure 6-16). This

process is conducted in order to analyse the ontology and check its classes and properties

through visualisation, which makes it easier for us to understand the differences between the

two versions. The statistics section shows that the ontology contains 55 classes, 44 object

properties, 30 datatype properties and no individuals.

Second, the new version ontology visualisation illustrates that there are 71 classes, 48 object

properties and 46 datatype properties (Figure 6-17). The figure shows that the new ontology

has major enhancements and changes regarding the introduction of new classes, and the

creation of new object properties in which they both provide better conceptualisation to the

SWRC ontology.

 87

Figure 6-16: webVOWL visualisation of the SWRC ontology version 0.3

 88

Figure 6-17: webVOWL visualisation of the SWRC ontology version 0.7.1

 89

The result of applying the two ontologies in the system produced the difference between the

two ontologies. The aim was to obtain the axioms that the old version contained in

comparison with the new version. This is beneficial in tracking what changes the old version

included and to determine the concepts that are not entailed by the new version. The input

parameters that were inserted were as follows:

- First Ontology: SWRC Ontology version 0.7.1

- Second Ontology: SWRC Ontology version 0.3

- Logical Differences Option: Common Signatures

- Forgetting Method: SHQ TBoxes

- Approximation Level: 2

The parameter of the first ontology was chosen to be the new version, while the second

ontology was chosen to be the older version. The reason for that is to obtain the axioms that

are entailed by the older version and not by the new one. This was conducted to accomplish

the aforementioned aim. Common Signatures was chosen as the logical differences option, in

which specified signatures are not selected. This is useful to make LETHE computes the

logical differences based on all common signatures that the two ontologies share. Changing

the parameter of the forgetting method did not make differences in the result, as all of them

gave the same resulting axioms. Figure 6-18 illustrates the result in readable format.

Figure 6-18: The resulting ontology after applying logical differences function

The figure shows the axiom Unpublished ⊑ Publication in which it states clearly that

Unpublished class is subclass of Publication class. This axiom exists in the old version

ontology, which shows that LETHE gave the results of the concepts that are entailed by the

 90

old version and not by the new one. Figure 6-19 shows the axiom in the old ontology version

visualised in webVOWL.

Figure 6-19: Part of the visualisation of the SWRC old version ontology showing the Unpublished class is a subclass of
Publication

The following table was created manually to illustrate the different concepts between the two

ontologies with the clarification of key changes that have occurred (Table 5).

Ontology

element

Ontology

element type

Version 0.3 Version 0.7.1

cooperateWith Object

property

AcademicStaff ⊑

∀cooperateWith.AcademicStaff

AcademicStaff ⊑

∀cooperateWith.Person

Institute ⊑

∀cooperateWith.Institute

Organization ⊑

∀cooperateWith.Organization

editor Object

Property

Book ⊑ ∀editor.Person

InBook ⊑ ∀editor.Person

InCollection ⊑ ∀editor.Person

InProceedings ⊑ ∀editor.Person

Proceedings ⊑ ∀editor.Person

∃editor.⊤ ⊑ Person

isAbout Object

Property

Project ⊑

∀isAbout.ResearchTopic

Project ⊑ ∀isAbout.Topic

product Object

Property

SoftwareProject ⊑

∀product.Product

No product property

Unpublished product Unpublished ⊑ Publication Unpublished ⊑ Document
Table 5: Summary of the resulting axioms of logical differences function applied on the SWRC ontology

 91

The table shows the axiom AcademicStaff ⊑ ∀cooperateWith.AcademicStaff in the first

row of the table that exist in the old version. This axiom contains AcademicStaff on the right

hand side of the inclusion, which has been changed to Person class in the new version

(AcademicStaff ⊑ ∀cooperateWith.Person). In addition, the editor property was

eliminated from most of the axioms in the new version, comparing to the old version, in

which it exists in axioms including Book ⊑ ∀editor.Person, InBook ⊑ ∀editor.Person and

Proceedings ⊑ ∀editor.Person. Moreover, the right hand side of the axiom Project ⊑

∀isAbout.ResearchTopic, ResearchTopic class was changed to Topic class in the new

version. The object property product was eliminated from the new version. Finally, the class

Unpublished became sub-class of Document class, which is the parent class of Publication

and Unpublished classes in the new version.

In conclusion, the previous table illustrates that logical differences functionality is useful and

sufficient in extracting the differences between the two ontologies’ versions. The first

implementation of logical differences successfully produced results. Moreover, webVOWL

was useful in navigating the ontology and clearly identified the differences between the

different ontology versions. webVOWL has illustrated the graphical representation of

ontologies properly with the inclusion of all the corresponding classes and object properties.

6.3 VOWL and OntoGraf Comparison

In order to illustrate webVOWL’s capabilities in the perspective of other thorough developed

visualisation tools, the following comparison was conducted. The study involved comparison

between webVOWLs’ visualisation features and OntoGraf tool features. The comparison was

performed in terms of their layouts, node representation, types of files exportation and their

platforms. The OntoGraf tool background can be returned to in Section 2.4, while webVOWL

background is mentioned in Section 3.3.

OntoGraf provides different type of layouts including grid, radial, spring, tree, vertical

directed or horizontal directed. Other than these layouts, the user can interact with the graph

to place the nodes in different locations.

 92

Figure 6-20 shows the travel ontology represented in OntoGraf in horizontal directed layout.

The figure also shows the tooltip of the NationalPark class, which provides detailed

information about the class. In contrast, webVOWL’s layout provides the advantages of

force-directed methods, using D3 libraries, which gives the user the ability to manipulate the

graph in a dynamic way. As the graph in the layout moves dynamically while interacting with

it, the motion can be paused with the pause controller to locate nodes steadily.

Figure 6-20: OntoGraf visualisation of the travel ontology

OntoGraf presents the relationship between ontology nodes (classes) as arrows with different

colours that represents different types of relationships. These relationships are subclass,

individual, domain and range of object properties, and equivalence. OntoGraf does not

present object properties and datatype properties in separate nodes nor their characteristics,

including deprecated, symmetric, functional or transitive properties. However, it present

individuals as nodes to illustrate their belonging to a certain class. In comparison, webVOWL

presents classes as circle nodes, properties as rectangles, and individuals as numbers in the

centre of classes’ nodes.

Moreover, OntoGraf provides tooltips of nodes that shows more details including URI,

subclasses, disjoint classes and annotations. This tooltip is configurable in which the user can

 93

add or remove detailed information about a certain node. On the other hand, webVOWL

provides a selection details area which encloses information about the selected node in the

graph. This information depends on the type of the selected node. For example, the

information of the class node includes name, type, disjoints (with other classes), individuals

and comments. A property node has different information which is name, type (object or

datatype property), domain and range.

OntoGraf provides the capability to export the ontology graph to images in various

extensions, which are PNG, JPG and GIF. In addition, the graphs can be exported to a DOT

(Graph Description Language) file, which can be customised using different JavaScript

libraries [55, 56]. On the second hand, webVOWL provides exporting of graphs to SVG.

Scalable Vector Graphics (SVG) is an XML-based language that features the capability of

scaling images without losing the quality of them [57]. The XML language in SVG helps in

editing graphs or customising the specifications of them easily. In addition, webVOWL

provides the option of exporting the resulting graph to JSON file.

OntoGraf was developed as a plugin to Protégé editor, and was implemented using Java

programming language. This suits standalone applications that are based on Java language.

On the other hand, webVOWL was developed completely using open web standards,

including HTML, CSS and JavaScript. Thus, webVOWL is suitable for applications that use

the aforementioned web languages.

This comparison study shows that webVOWL provides dynamic interaction layout, in which

the user can manipulate the graph and customise its view according to their needs. Moreover,

VOWL specifications of visualising the OWL language are rich with many different types of

OWL elements. Table 6 shows that VOWL presents classes, equivalent classes, subclasses

properties and datatypes. In contrast, OntoGraf presents only classes and individuals as

nodes. Thus, visualisation by VOWL language in webVOWL is sufficient for non-expert

users to visualise ontologies and identify the relationship between their elements. In addition,

it provides enough details for the expert users. According to Lohmann [31], positive

evaluation outcomes were obtained from expert users who have used webVOWL for the

purpose of evaluating the tool. One noteworthy point of the evaluation outcomes is the expert

users’ praise for force-directed layout, which helped them to easily identify the hierarchical

relationships between the ontology nodes.

 94

Comparison points webVOWL OntoGraf

Export to SVG, JSON Image (PNG,JPG,GIF), DOT

Platform Web Local Applications

Layout Dynamic force-directed graph

layout using the JavaScript

library D3.

Different layouts such as: Grid

(alphabetical), Radial, Spring,

tree, vertical directed, or

horizontal directed.

Node representation Classes, equivalent classes,

subclasses, properties,

datatypes.

Classes, individuals

Implementation language HTML, CSS, SVG and

JavaScript.

Java

Table 6: Summary of the comparison between webVOWL and OntoGraf

6.4 Our Tool and PATO Tool Comparison

This section presents a comparison between one of the previously mentioned modularisation

tools, PATO, and our system’s uniform interpolation functionality in terms of their input

parameters, segmentation methods and the computed ontologies.

The PATO tool is a standalone application developed as an implementation of the

partitioning modularisation approaches. These approaches aim to produce modules of

ontologies based on their structural content. In addition, the steps to produce the modules

involve the use of another tool, Pajek [58, 59]. Pajek is a network analysis tool used to create

dependency graphs that are used as input parameters in PATO. On the other hand, our system

uses saturation-based reasoning methods that are useful in preserving the logical entailments

of ontologies. In other words, these methods produce restricted view ontologies based on

ontologies’ semantics. Section 2.4.1 provides the background of the PATO tool.

The process of producing modules using PATO involves the following input parameters: an

ontology file in OWL format, a network file that represents the dependency graph of .net

extension, several clustering options such as “include subclass links”, “include property

links”, or “include definition links”, island or cluster size and an output directory. Clicking on

the convert button in the PATO interface converts the input ontology file to a .net file, which

 95

contains the relations between the ontology entities. Figure 6-21 illustrates this step using the

travel ontology. The methods used to produce modules are based on the frail connections

among these modules. Another important parameter is the size of the island or module. This

parameter is inserted after the ontology is converted to a .net file. The user should also insert

the output directory in which the resulting modules are saved. In contrast, the function of

uniform interpolation in our tool requires three basic parameters needed to produce restricted

view ontologies. The first one is the ontology file in OWL or RDF format. The second one is

the forgetting method, which can be one of three methods (ALCH TBoxes, SHQ TBoxes and

ALC with ABoxes). The third parameter is a set of symbols, which defines the outcome’s

concepts.

Figure 6-21: The interface of PATO illustrating the step of inserting an ontology and the .net file before the conversion
process

 96

PATO produced .net extension modules that can be realised with network analyser tools such

as Pajek. According to [18], these modules are “self-contained OWL ontologies”. However,

the testing of PATO did not result in OWL files; rather they are .net files and a .clu that

represent a partition file. In comparison, our tool produced a .owl file in OWL/XML syntax,

which can be used with most ontology editors including Protégé, SWOOP or TopBraid.

Figure 6-22 displays all of the modules contained in the (partition) .clu file produced using

Pajek, with elements of each module represented by different colours. For example, the

elements of one of the modules that represents destination hotels are coloured red. The

elements of this module include LuxuryHotel, Hotel, BedAndBreakfast, Campground and

AccommodationRating. This example shows how the tool has formed a module of hotels

and related terms from the links forming these terms (concepts) in the original ontology.

Moreover, by looking at the module represented in green, the majority of the elements are

related to the Destination class. These elements are subclasses of the Destination class,

which are Beach, BudgetHotelDestination, City, UrbanArea, RuralArea, NationalPark,

Town, and Farmland. The result also included the hasAccommodation property. Thus, we

can deduce that the computed module is related to the destination concepts, as the majority of

the classes are subclasses of the Destination class. However, the original ontology involves

other subclasses of the Destination class that were not included as part of the resulting

module. This could be because of the methodology used to produce the modules, which is

structuring-based partitioning that produce modules based on the weak connections among

them. To compare the results given by LETHE to those obtained by PATO, the set of

symbols that were selected in our tool are similar to the PATO results. Figure 6-23 shows the

resulting ontology visualised in webVOWL. The figure shows that LETHE included two

classes that determine the logical entailment of symbols in the ontology, which are Thing and

Nothing classes. The Nothing class were included to establish that the RuralArea and

UrbanArea classes negate each other or are disjoints (RuralArea ∩ UrbanArea) ⊑ ⊥. This

axiom clearly shows that LETHE has preserved the semantics of the original ontology by

including the required classes (Thing and Nothing). Moreover, with LETHE, the concepts of

the resulting view can be easily determined because of the ability to select symbols that

should be included in the view. Although it could require effort to select the symbols

manually, particularly if the ontology is large, a future work on this matter is described in

Chapter 7.

 97

Figure 6-22: Pajek visualisation of the resulting .clu (partition) file, illustrating the produced modules in different colours

 98

Figure 6-23: wevVOWL visualisation of the resulting restricted view ontology

The content of .net files that are produced by PATO can be browsed by opening it using a

text editor. Figure 6-24 shows the content of one of the modules that was produced from the

travel ontology. The figure also shows that it is difficult to obtain the logical meaning of the

presented output, as it only describes the existence of 10 vertices, which are the previously

mentioned Destination classes, and the arcs, which describes the relationship “is-a” between

these classes. On the other hand, using our tool to browse the resulting ontologies makes it

easier to understand the logical meaning of the axioms. Figure 6-25 shows the resulting

ontology in a readable format.

Figure 6-24: Extract of .net file syntax Figure 6-25: The resulting ontology in readable format

 99

In conclusion, the PATO tool can be used to produce clusters (modules) in cases in which the

user likes to segment a large ontology when they do not have an in-depth understanding of its

content. Moreover, the segmentation of such large ontologies produces ontologies that are

smaller, making it easier to browse their content. The user then can use our tool to obtain a

restricted view ontology based on a set of related concepts (symbols). However, there is a gap

between the use of the output produced by PATO and applying these outputs that are of type

.net and .clu on our tool. As our tool only works with OWL or RDF formats, this is an issue

that can be addressed with an enhanced version of PATO that can produce modules of OWL

or RDF formats. Table 7 summarises the comparison points between PATO and our tool.

6.5 Summary

The evaluation of the tool was conducted in the form of case studies that aims to illustrate

results given by LETHE functionalities. The chapter included two main case studies that

were performed with regard to uniform interpolation, forgetting and logical differences

functionalities. The results were visualised using webVOWL to evaluate the graphs of the

resulting ontologies. A comparison between VOWL and OntoGraf was presented to illustrate

the capabilities that VOWL provides. Lastly, Section 6.4 provided a comparison between

PATO and our tool.

Comparison points PATO Our Tool

Parameters - Ontology file
- Network file
- Clustering options

including subclass
links, property links,
and definition links.

- Island (cluster) size
- Output directory

- Ontology file
- Forgetting method
- Symbols

Segmentation methods Modularisation: partitioning

approaches

Saturation-based reasoning

methods

Resulting output Modules in type of networks

(.net) or partitions (.clu)

OWL/XML syntax file

 Table 7: Summary of the comparison between PATO and our tool

 100

7 Conclusions and Future Work

Recently, the number of real world applications that use ontologies to describe their terms

and concepts has increased. These ontologies are often quite large in order to fit such

applications. This has led to the need for tools that can extract smaller ontologies from larger

ones. Many approaches have been introduced for this purpose. One of these approaches is

modularisation. Modularisation approaches segment ontologies into smaller modules. The

modularisation approaches vary in their types. Some of these types are partitioning

approaches and module extraction approaches, which were discussed in Chapter 2, Section

2.4. Most of the methods that are used in these approaches are structural rather than

semantical. On the other hand, the methods used in LETHE, a tool developed by Koopmann,

are semantical, which preserves the logical outcomes of ontologies.

The main goal of the current project was to exploit the capabilities provided by LETHE in a

web-based browser with advanced analysis features. Through the browser, the user can gain

an in-depth understanding of the logical structure of ontologies and the relationship between

their terms.

In our project, we have proposed a web-based tool that exploits the functionalities provided

by LETHE. These functionalities are implementations of uniform interpolation, logical

differences and TBox abduction. Along with exploiting such features, visualisation features

were integrated. The web tool targets expert and non-expert ontology users who would like to

browse ontologies and extract restricted views out of them. The expert user is able to use the

restricted view ontologies for debugging purposes, ontology analysis and reuse. The non-

expert users can exploit the tool in obtaining smaller views of ontologies, which makes it

easier for them to understand their contents.

In our tool, we tried to exploit all of the functionalities provided by the LETHE library.

However, only a complete implementation of uniform interpolation and logical differences

functionalities were provided. The implementation of TBox abduction was only partially

implemented due to the effort and time it requires to completely implement it. Moreover,

TBox abduction functionality in the current version of LETHE is only supported for ALCH

 101

expressive language and only for acyclic TBoxes. Thus, its implementation would not

support most ontologies that could be written in more expressive languages, such as SHQ.

Table 8 summarises the features provided by our tool’s interface in comparison with the

LETHE standalone version interface. These features include the three functionalities

provided by LETHE, browsing ontologies in a readable format, symbols filtration,

visualisation capabilities and downloading ontologies. In the LETHE standalone version,

uniform interpolation is implemented along with ontology browsing in a readable format and

the downloading of the computed ontologies. On the other hand, the LETHE web version

provides the full implementation of uniform interpolation and logical differences, but only

partial implementation of TBox abduction. In addition, symbols filtration is provided, which

allows the users to filter symbols to make it easier for them to select symbols. Visualisation

features are provided and the resulting ontologies can be downloaded.

Features LETHE standalone version LETHE web version

Uniform interpolation Implemented without the

forgetting mode

Implemented with the forgetting

mode

Logical differences Not implemented Implemented

TBox abduction Not implemented Partially implemented

Ontology browsing in
readable format

Implemented for uniform

interpolation

Implemented for uniform

interpolation and logical

differences

Symbols filtration Not implemented Implemented

Visualisation Not implemented Visualise original and resulting

ontologies

Downloading resulting

ontologies

Implemented for uniform

interpolation

Implemented for uniform

interpolation and logical

differences
Table 8: Summary of the features provided by the LETHE standalone version and the LETHE web version

Due to the deadline required to submit the project, some of its objectives were not met, which

are as follows:

- Determine the size of ontology that LETHE can handle and identify bottlenecks.

- Apply the analyser to a real-life ontology in medicine or bio-informatics.

 102

- Provide an artefact within the scope of the application (such as a manual) as a

resource for learning how to use LETHE.

Nonetheless, these objectives are secondary ones, as the main purpose of the project was

achieved, which is developing a web application that exploits the LETHE tool and involves

analysis visualisation features. Moreover, one of the project objectives is to evaluate the

project against different types of ontologies. This was achieved, as the tool has been tested

against travel, bibtex and SWRC ontologies. The testing of the bibtex ontology was

performed as part of illustrating the use cases of the uniform interpolation functionality,

which was provided in Chapter 5, Section 5.2. The testing of the travel and SWRC ontologies

can be referred to in the case studies that were presented in Chapter 6, Sections 6.1 and 6.2.

The tool is a first prototype and has limitations, some of which are fundamental. These

limitations are concerned with weaknesses of uniform interpolation. One limitation is the

LETHE’s inability to support the forgetting of roles in the SHQ TBoxes forgetting method.

In addition, LETHE lacks the support of nominals that can be included in TBox axioms.

These limitations can be tackled in future improvements of the LETHE library. Other

limitations are concerned with testing a real-world ontology with our tool. The terms in the

ontology including classes and object properties were identified using concept IDs, while

their nominal presentation (objects names) was performed using rdfs:label element.

The presentation of such classes and object properties to the user would have no meaning, as

they are numeric identifiers. However, this can be solved by presenting their corresponding

rdfs:label to the user in order for them to select a set of symbols based on them. As

LETHE only accepts symbols of type OWLEntity, the tool in the current version cannot deal

with rdfs:label to compute ontologies based on the rdfs:label type. This problem

can be tackled by converting rdfs:label to OWLEntity type.

Another restriction of our tool is concerned with the logical differences service. The service

successfully produces the new entailments among two different versions of ontologies.

However, a table of the differences based on the new entailments has to be produced

automatically, showing specific details, such as the type of the entity that was changed, or

showing the symbols that have differed from one version to another. The table can be similar

to the one provided in the logical differences case study in Chapter 6, Section 6.2.

 103

The tool also cannot semi-automatically select symbols. For instance, if the user selects a

certain symbol that can be an object property or a class, the tool automatically selects the

subsequent objects of the ontology to compute the uniform interpolation based on them. This

feature would make it easy for users to obtain a restricted view based on a certain class or

property hierarchy.

It was intended to provide a manual or an artefact that can be used as a resource for users to

return to. This manual can provide a comprehensive description of our tools services as well

as a user guide. The resource can be updated with future improvements in the tool.

Nonetheless, this objective can be met in the future.

The following points summarises our tool’s limitations:

- Supporting the TBox abduction service in the interface.

- Semi-automatic selection of ontology symbols.

- Converting rdfs:label to OWLEntity symbols to support the use of real world

ontologies that uses numeric identifiers to identify their objects.

- Production of a detailed logical differences table that illustrates detailed description of

the differences.

The use of the LETHE library in this project has proven its usefulness in integrating it in

applications that use web-based technologies. In addition, we have proven that it is possible

to use the library in ontology analysis applications to analyse ontologies of different

expressive description languages including, ALC, ALCH and SHQ. This was illustrated in

Chapter 6, where two case studies were conducted for the purpose of analysing the computed

ontologies. Finally, as mentioned previously, the tool is a first prototype and it is open for

future enhancements and improvements.

 104

References

[1] Ontology editors [Online] Available: https://www.w3.org/wiki/Ontology_editors
[Accessed 29 Feb 2016]

[2] Koopmann, Patrick A., and Renate A. Schmidt, “LETHE: Saturation-Based Reasoning for
Non-Standard Reasoning Tasks.” In CEUR Workshop Proceedings 1387, pp. 23-30, 2015.

[3] Koopmann, Patrick A., “Practical uniform interpolation for expressive description logics.”
PhD Theses. Manchester, UK: The University of Manchester, 2015.

[4] Gruber, Thomas R., “A Translation Approach to Portable Ontology Specifications.” In
Knowledge Acquisition, 5(2), pp. 199-220, 1993.

[5] Gasevic, Dragan., Dragan Djuric, and Vladan Devedzic, “Ontologies.” In Model Driven
Engineering and Ontology Development, 2nd ed., pp. 45-80, Springer Publishing Company,
Incorporated, 2009.

[6] Turhan, Anni-Yasmin Y., "Introductions to Description Logics - A Guided Tour." In
Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 8067, pp. 150-61, 2013.

[7] Shih-Wei Chen, Yu-Ting Tseng and Tsai-Ya Lai, “The design of an ontology-based
service-oriented architecture framework for traditional chinese medicine healthcare.” In e-
Health Networking, Applications and Services (Healthcom), IEEE 14th International
Conference, pp. 353-356, Beijing, 2012.

[8] Baader, Franz., and W. Nutt, “Basic Description Logics.” In Description Logic
Handbook: Theory, Implementation, and Applications. Baader, Franz. (Eds.), pp. 47-95,
USA: The Cambridge University Press, 2007.

[9] Krötzsch, Markus., F. Simanˇcík, and I. Horrocks, “A Description Logic Primer.” In
CoRR, abs/1201.4089, 2012, [Online] Available: http://arxiv.org/abs/1201.4089 [Accessed 27
April 2016]

[10] Horrocks, Ian., and U. Sattler, “A Description Logic with Transitive and Inverse Roles
and Role Hierarchies.” In Journal of Logic and Computation, 9(3), pp. 385-410, 1999.

[11] Baader, Franz., and U. Sattler, “Description Logics with Symbolic Number
Restrictions.” In Proceedings of the Twelfth European Conference on Artificial Intelligence
(ECAI-96), W. Wahlster, Ed., pp. 283-287, John Wiley \& Sons Ltd, 1996.

[12] Horrocks, Ian., P. F. Patel-Schneider, and D. L. McGuinness, C. A. Welty, “OWL: a
Description Logic Based Ontology Language for the Semantic Web.” In Description Logic
Handbook: Theory, Implementation, and Applications. Baader, Franz. (Eds.), pp. 458-486,
USA: The Cambridge University Press, 2007.

[13] Zuo zhihong and Zhou mingtian, “Web Ontology Language OWL and its description
logic foundation.” In Parallel and Distributed Computing, Applications and Technologies,
PDCAT'2003. Proceedings of the Fourth International Conference, pp. 157-160, 2003.

[14] W3 staff, “OWL 2 Web Ontology Language Primer (Second Edition) Publication
History - W3C”, In Continuing Education on New Data Standards & Technologies, 2012,

https://www.w3.org/wiki/Ontology_editors

 105

[Online] Available: http://acva2010.cs.drexel.edu/omeka/items/show/5146 [Accessed 20
April 2016]

[15] W3 staff, “OWL 2 Web Ontology Language Structural Specification and Functional-
Style Syntax (Second Edition)”, Continuing Education on New Data Standards &
Technologies, 2012, [Online] Available: https://www.w3.org/2012/pdf/REC-owl2-syntax-
20121211.pdf [Accessed 20 April 2016]

[16] Pizza ontology [Online] Available:
http://protege.stanford.edu/ontologies/pizza/pizza.owl [Accessed 20 April]

[17] Horridge, Matthew., “A Practical Guide to Building OWL Ontologies Using Protégé 4
and CO-ODE Tools.” 1.3 ed. s.l.: The University of Manchester, 2011, [Online] Available:
http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/ [Accessed
20 April 2016]

[18] D'Aquin, Mathieu., A. Schlicht, H. Stuckenschmidt, and M. Sabou. “Criteria and
Evaluation for Ontology Modularization Techniques.” In Modular Ontologies, H.
Stuckenschmidt, C. Parent, and S. Spaccapietra (Eds.). Lecture Notes in Computer Science,
vol. 5445, pp. 67-89, Springer-Verlag, 2009.

[19] Schlicht, Anne., and H. Stuckenschmidt, “A Flexible Partitioning Tool for Large
Ontologies.” In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology - Volume 01 (WI-IAT '08), pp. 482-488, IEEE
Computer Society, 2008.

[20] PATO tool [Online] Available: http://web.informatik.uni-
mannheim.de/anne/Modularization/pato.html [Accessed 12 April 2016]

[21] Noy, Natalya F., and M. A. Musen, “The PROMPT suite: interactive tools for ontology
merging and mapping.” In International Journal of Human-Computer Studies, 59, 6, pp. 983-
1024, 2003.

[22] Schlicht, Anne., and H. Stuckenschmidt, “Structure-Based Partitioning of Large
Ontologies.” In Modular Ontologies, Schlicht, Anne., Heiner Stuckenschmidt, Christine
Parent, and Stefano Spaccapietra, (Eds.), Lecture Notes in Computer Science, vol. 5445, pp.
187-210, Springer-Verlag, 2009.

[23] Protégé editor [Online] Available: http://protege.stanford.edu/ [Accessed 12 April 2016]

[24] OntoGraf [Online] Available: http://protegewiki.stanford.edu/wiki/OntoGraf (2014)
[Accessed 21 August 2016]

[25] OWLViz [Online] Available: http://protegewiki.stanford.edu/wiki/OWLViz (2014),
[Accessed 21 August 2016]

[26] Ramakrishnan, S., and A. Vijayan, “A study on development of cognitive support
features in recent ontology visualization tools.” In Artif. Intell. Rev. 41, 4, pp. 595-623, 2014.

[27] Horridge, M., and S. Bechhofer, “The OWL API: A Java API for OWL Ontologies.” In
Semantic Web 2, pp. 11-21, 2011.

[28] Shearer, R., Motik, B., and I. Horrocks, “HermiT: A Highly-eficient OWL Reasoner.” In
CEUR Workshop Proceedings 432, 2009.

http://protege.stanford.edu/ontologies/pizza/pizza.owl

 106

[29] Lohmann, S., S. Negru, F. Haag, and T. Ertl, “VOWL 2: User-oriented Visualization of
Ontologies.” In Lecture Notes in Computer Science (including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 8876, pp. 266-81, 2014.

[30] Micallef, L., and Peter J. Rodgers, “eulerForce: Force-directed layout for Euler
diagrams.” In Journal of Visual Languages and Computing, 25, pp. 924-934, 2014.

[31] Lohmann, S., S. Negru, F. Haag, and T. Ertl, “Visualizing Ontologies with VOWL.” In
Semantic Web 7(4) pp. 399-419, 2016.

[32] Lohmann, S., S. Negru, and F. Haag, “VOWL: Visual notation for OWL ontologies.”
2014. [Online] Available: http://purl.org/vowl/ [Accessed 12 April 2016].

[33] Intellij IDE [Online] Available: https://www.jetbrains.com/idea/ [Accessed 20 August
2016]

[34] Loeliger, J., “Version Control with Git”. California: O’Reilly Media, Inc., 2009.

[35] GitHub [Online] Available: https://github.com/ [Accessed 25 August 2016]

[36] "Spring MVC Framework for Web 2.0." In International Journal of Engineering
Innovations and Research 1.3, pp. 188-93, 2012.

[37] Johnson, R., et. al. “Spring Framework Reference Documentation 4.3.2.” 2004-2016.
[Online] Available: http://docs.spring.io/spring/docs/current/spring-framework-
reference/htmlsingle/ [Accessed 25 August 2016]

[38] Sobernig, S., U. Weiss. Zdun, M., and P. Avgeriou, "Inversion-of-control Layer." In
Pattern Languages of Programs Proceedings of the 15th European Conference, pp. 1-22,
2010.

[39] Koopmann, Patrick A., and Renate A. Schmidt, "Forgetting Concept and Role Symbols
in ALCH-ontologies." In Lecture Notes in Computer Science (including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8312, pp. 552-67, 2013.

[40] NodeJs [Online] Available: https://nodejs.org/en/ [Accessed 20 August 2016]

[41] Nginx [Online] Available: https://www.nginx.com/resources/wiki/ [Accessed 22 August
2016]

[42] Sarkar, D., and ebrary Academic Complete. "Nginx as a Reverse Proxy." In Nginx 1 Web
Server Implementation Cookbook: Over 100 Recipes to Master Using the Nginx HTTP Server
and Reverse Proxy. Ch. 7, pp. 119-134, Birmingham, U.K.: Packt Open Source Pub., 2011.

[43] Everett, Gerald D., R. McLeod, and Wiley InterScience. “Testing Strategy” In Software
Testing: Testing across the Entire Software Development Life Cycle. Ch. 4, pp. 66-78,
Piscataway, NJ: Hoboken, N.J.: IEEE; Wiley-Interscience, 2007.

[44] Parsons, D.., and SpringerLink.” Unit Testing with Junit.” In Foundational Java Key
Elements and Practical Programming, pp. 219-244, 2012.

[45] Bibtex.owl ontology developed by Nick Knouf, from Cornell University,
nknouf@zeitkunst.org [Online] Available: http://zeitkunst.org/bibtex/0.1/ [Accessed 03
August 2016]

[46] BibTeX [Online] Available: http://www.bibtex.org/ [Accessed 03 August 2016]

http://purl.org/vowl/

 107

[47] Fenn, J., “Managing citations and your bibliography with BibTeX.” In The PracTeX
Journal 4. 2006.

[48] OWLLogicalAxiom in OWL API page [Online] Available:
http://owlapi.sourceforge.net/javadoc/org/semanticweb/owlapi/model/OWLLogicalAxiom.ht
ml [Accessed 03 August 2016]

[49] Travel.owl developed by Holger Knublauch from Stanford University, [Online]
Available: http://protege.cim3.net/file/pub/ontologies/travel/travel.owl# [Accessed 03 May
2016]

[50] Sure, Y., S. Bloehdorn, P. Haase, J. Hartmann, and D. Oberle, “The SWRC ontology –
semantic web for research communities”. In Proceedings of the 12th Portuguese conference
on Progress in Artificial Intelligence (EPIA'05), Carlos Bento, Amílcar Cardoso, and Gaël
Dias (Eds.), pp. 218-231 Springer-Verlag, Berlin, Heidelberg, 2005.

[51] Vrandecic, D., P. Hitzler, and R. Studer, “DLP - An Introduction”, 2005, [Online]
Available: http://corescholar.libraries.wright.edu/cse/67 [Accessed 10 August 2016]

[52] Jozefowska, J., A. Lawrynowicz, and T. Lukaszewski, “Frequent Pattern Discovery from
OWL DLP Knowledge Bases.” In Managing Knowledge In A World Of Networks,
Proceedings 4248, pp. 287-302, 2006.

[53] SWRC Ontology [Online] Available: http://ontoware.org/swrc/ [Accessed 10 August
2016]

[54] Bostock, M., V. Ogievetsky, and J. Heer, “D³ Data-Driven Documents.” In IEEE
Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2301-2309, 2011.

[55] D3 (Data-Driven Documents) [Online] Available: https://d3js.org/ [Accessed 27 April
2016]

[56] Keith, J., and J. Sambells, “DOM Scripting: Web Design with Javascript and the
Document Object Model” (2nd ed.). Apress, Berkely, CA, USA, 2010.

[57] Chaomei, C., “SVG and X3D: New XML Technologies for 2D and 3D Visualization.” In
Visualizing the Semantic Web: Xml-Based Internet and Information Visualization. pp. 124-
133, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[58] Batagelj, V., and A. Mrvar, “Pajek - Analysis and Visualization of Large Networks.” In
Graph Drawing 2265, pp. 477-478, 2002.

[59] Pajek tool [Online] Available: http://mrvar.fdv.uni-lj.si/pajek/ [Accessed 27 April 2016]

[60] Apache Tiles Framework [Online] Available: https://tiles.apache.org/ [Accessed 20
August]

https://tiles.apache.org/

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Declaration
	Intellectual Property Statement
	Acknowledgment
	1 Introduction
	1.1 Project Introduction and Motivation
	1.2 Project Objectives and Scope
	1.3 Report Structure

	2 General Background
	2.1 Introduction
	2.2 Description Logics
	2.3 OWL Ontologies
	2.4 Related Approaches
	2.5 Summary

	3 Used Tools
	3.1 LETHE
	3.2 OWL API
	3.3 VOWL
	3.4 Summary

	4 Design and Implementation
	4.1 Requirements and Overall System Architecture
	4.2 Implementation Platforms and Programming Language
	4.3 Use Cases’ Implementation
	4.4 System Integration
	4.5 Summary

	5 System Testing and Illustration
	5.1 System Testing
	5.2 LETHE Web-Analyser: System Illustration
	5.3 Summary

	6 Case Studies
	6.1 Uniform Interpolation and Forgetting Case Study
	6.2 Logical Differences Case Study
	6.3 VOWL and OntoGraf Comparison
	6.4 Our Tool and PATO Tool Comparison
	6.5 Summary

	7 Conclusions and Future Work
	References
	[1] Ontology editors [Online] Available: https://www.w3.org/wiki/Ontology_editors [Accessed 29 Feb 2016]
	[2] Koopmann, Patrick A., and Renate A. Schmidt, “LETHE: Saturation-Based Reasoning for Non-Standard Reasoning Tasks.” In CEUR Workshop Proceedings 1387, pp. 23-30, 2015.
	[3] Koopmann, Patrick A., “Practical uniform interpolation for expressive description logics.” PhD Theses. Manchester, UK: The University of Manchester, 2015.
	[4] Gruber, Thomas R., “A Translation Approach to Portable Ontology Specifications.” In Knowledge Acquisition, 5(2), pp. 199-220, 1993.
	[5] Gasevic, Dragan., Dragan Djuric, and Vladan Devedzic, “Ontologies.” In Model Driven Engineering and Ontology Development, 2nd ed., pp. 45-80, Springer Publishing Company, Incorporated, 2009.
	[6] Turhan, Anni-Yasmin Y., "Introductions to Description Logics - A Guided Tour." In Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8067, pp. 150-61, 2013.
	[7] Shih-Wei Chen, Yu-Ting Tseng and Tsai-Ya Lai, “The design of an ontology-based service-oriented architecture framework for traditional chinese medicine healthcare.” In e-Health Networking, Applications and Services (Healthcom), IEEE 14th Internati...
	[8] Baader, Franz., and W. Nutt, “Basic Description Logics.” In Description Logic Handbook: Theory, Implementation, and Applications. Baader, Franz. (Eds.), pp. 47-95, USA: The Cambridge University Press, 2007.
	[9] Krötzsch, Markus., F. Simanˇcík, and I. Horrocks, “A Description Logic Primer.” In CoRR, abs/1201.4089, 2012, [Online] Available: http://arxiv.org/abs/1201.4089 [Accessed 27 April 2016]
	[10] Horrocks, Ian., and U. Sattler, “A Description Logic with Transitive and Inverse Roles and Role Hierarchies.” In Journal of Logic and Computation, 9(3), pp. 385-410, 1999.
	[11] Baader, Franz., and U. Sattler, “Description Logics with Symbolic Number Restrictions.” In Proceedings of the Twelfth European Conference on Artificial Intelligence (ECAI-96), W. Wahlster, Ed., pp. 283-287, John Wiley \& Sons Ltd, 1996.
	[12] Horrocks, Ian., P. F. Patel-Schneider, and D. L. McGuinness, C. A. Welty, “OWL: a Description Logic Based Ontology Language for the Semantic Web.” In Description Logic Handbook: Theory, Implementation, and Applications. Baader, Franz. (Eds.), pp....
	[13] Zuo zhihong and Zhou mingtian, “Web Ontology Language OWL and its description logic foundation.” In Parallel and Distributed Computing, Applications and Technologies, PDCAT'2003. Proceedings of the Fourth International Conference, pp. 157-160, 2003.
	[14] W3 staff, “OWL 2 Web Ontology Language Primer (Second Edition) Publication History - W3C”, In Continuing Education on New Data Standards & Technologies, 2012, [Online] Available: http://acva2010.cs.drexel.edu/omeka/items/show/5146 [Accessed 20 Ap...
	[15] W3 staff, “OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax (Second Edition)”, Continuing Education on New Data Standards & Technologies, 2012, [Online] Available: https://www.w3.org/2012/pdf/REC-owl2-syntax-201212...
	[16] Pizza ontology [Online] Available: http://protege.stanford.edu/ontologies/pizza/pizza.owl [Accessed 20 April]
	[17] Horridge, Matthew., “A Practical Guide to Building OWL Ontologies Using Protégé 4 and CO-ODE Tools.” 1.3 ed. s.l.: The University of Manchester, 2011, [Online] Available: http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-t...
	[18] D'Aquin, Mathieu., A. Schlicht, H. Stuckenschmidt, and M. Sabou. “Criteria and Evaluation for Ontology Modularization Techniques.” In Modular Ontologies, H. Stuckenschmidt, C. Parent, and S. Spaccapietra (Eds.). Lecture Notes in Computer Science,...
	[19] Schlicht, Anne., and H. Stuckenschmidt, “A Flexible Partitioning Tool for Large Ontologies.” In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 01 (WI-IAT '08), pp. 482-4...
	[20] PATO tool [Online] Available: http://web.informatik.uni-mannheim.de/anne/Modularization/pato.html [Accessed 12 April 2016]
	[21] Noy, Natalya F., and M. A. Musen, “The PROMPT suite: interactive tools for ontology merging and mapping.” In International Journal of Human-Computer Studies, 59, 6, pp. 983-1024, 2003.
	[22] Schlicht, Anne., and H. Stuckenschmidt, “Structure-Based Partitioning of Large Ontologies.” In Modular Ontologies, Schlicht, Anne., Heiner Stuckenschmidt, Christine Parent, and Stefano Spaccapietra, (Eds.), Lecture Notes in Computer Science, vol....
	[23] Protégé editor [Online] Available: http://protege.stanford.edu/ [Accessed 12 April 2016]
	[24] OntoGraf [Online] Available: http://protegewiki.stanford.edu/wiki/OntoGraf (2014) [Accessed 21 August 2016]
	[25] OWLViz [Online] Available: http://protegewiki.stanford.edu/wiki/OWLViz (2014), [Accessed 21 August 2016]
	[26] Ramakrishnan, S., and A. Vijayan, “A study on development of cognitive support features in recent ontology visualization tools.” In Artif. Intell. Rev. 41, 4, pp. 595-623, 2014.
	[27] Horridge, M., and S. Bechhofer, “The OWL API: A Java API for OWL Ontologies.” In Semantic Web 2, pp. 11-21, 2011.
	[28] Shearer, R., Motik, B., and I. Horrocks, “HermiT: A Highly-eficient OWL Reasoner.” In CEUR Workshop Proceedings 432, 2009.
	[29] Lohmann, S., S. Negru, F. Haag, and T. Ertl, “VOWL 2: User-oriented Visualization of Ontologies.” In Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8876, pp. 26...
	[30] Micallef, L., and Peter J. Rodgers, “eulerForce: Force-directed layout for Euler diagrams.” In Journal of Visual Languages and Computing, 25, pp. 924-934, 2014.
	[31] Lohmann, S., S. Negru, F. Haag, and T. Ertl, “Visualizing Ontologies with VOWL.” In Semantic Web 7(4) pp. 399-419, 2016.
	[32] Lohmann, S., S. Negru, and F. Haag, “VOWL: Visual notation for OWL ontologies.” 2014. [Online] Available: http://purl.org/vowl/ [Accessed 12 April 2016].
	[33] Intellij IDE [Online] Available: https://www.jetbrains.com/idea/ [Accessed 20 August 2016]
	[34] Loeliger, J., “Version Control with Git”. California: O’Reilly Media, Inc., 2009.
	[35] GitHub [Online] Available: https://github.com/ [Accessed 25 August 2016]
	[36] "Spring MVC Framework for Web 2.0." In International Journal of Engineering Innovations and Research 1.3, pp. 188-93, 2012.
	[37] Johnson, R., et. al. “Spring Framework Reference Documentation 4.3.2.” 2004-2016. [Online] Available: http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/ [Accessed 25 August 2016]
	[38] Sobernig, S., U. Weiss. Zdun, M., and P. Avgeriou, "Inversion-of-control Layer." In Pattern Languages of Programs Proceedings of the 15th European Conference, pp. 1-22, 2010.
	[39] Koopmann, Patrick A., and Renate A. Schmidt, "Forgetting Concept and Role Symbols in ALCH-ontologies." In Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8312, p...
	[40] NodeJs [Online] Available: https://nodejs.org/en/ [Accessed 20 August 2016]
	[41] Nginx [Online] Available: https://www.nginx.com/resources/wiki/ [Accessed 22 August 2016]
	[42] Sarkar, D., and ebrary Academic Complete. "Nginx as a Reverse Proxy." In Nginx 1 Web Server Implementation Cookbook: Over 100 Recipes to Master Using the Nginx HTTP Server and Reverse Proxy. Ch. 7, pp. 119-134, Birmingham, U.K.: Packt Open Source...
	[43] Everett, Gerald D., R. McLeod, and Wiley InterScience. “Testing Strategy” In Software Testing: Testing across the Entire Software Development Life Cycle. Ch. 4, pp. 66-78, Piscataway, NJ: Hoboken, N.J.: IEEE; Wiley-Interscience, 2007.
	[44] Parsons, D.., and SpringerLink.” Unit Testing with Junit.” In Foundational Java Key Elements and Practical Programming, pp. 219-244, 2012.
	[45] Bibtex.owl ontology developed by Nick Knouf, from Cornell University, nknouf@zeitkunst.org [Online] Available: http://zeitkunst.org/bibtex/0.1/ [Accessed 03 August 2016]
	[46] BibTeX [Online] Available: http://www.bibtex.org/ [Accessed 03 August 2016]
	[47] Fenn, J., “Managing citations and your bibliography with BibTeX.” In The PracTeX Journal 4. 2006.
	[48] OWLLogicalAxiom in OWL API page [Online] Available: http://owlapi.sourceforge.net/javadoc/org/semanticweb/owlapi/model/OWLLogicalAxiom.html [Accessed 03 August 2016]
	[49] Travel.owl developed by Holger Knublauch from Stanford University, [Online] Available: http://protege.cim3.net/file/pub/ontologies/travel/travel.owl# [Accessed 03 May 2016]
	[50] Sure, Y., S. Bloehdorn, P. Haase, J. Hartmann, and D. Oberle, “The SWRC ontology – semantic web for research communities”. In Proceedings of the 12th Portuguese conference on Progress in Artificial Intelligence (EPIA'05), Carlos Bento, Amílcar Ca...
	[51] Vrandecic, D., P. Hitzler, and R. Studer, “DLP - An Introduction”, 2005, [Online] Available: http://corescholar.libraries.wright.edu/cse/67 [Accessed 10 August 2016]
	[52] Jozefowska, J., A. Lawrynowicz, and T. Lukaszewski, “Frequent Pattern Discovery from OWL DLP Knowledge Bases.” In Managing Knowledge In A World Of Networks, Proceedings 4248, pp. 287-302, 2006.
	[53] SWRC Ontology [Online] Available: http://ontoware.org/swrc/ [Accessed 10 August 2016]
	[54] Bostock, M., V. Ogievetsky, and J. Heer, “D³ Data-Driven Documents.” In IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp. 2301-2309, 2011.
	[55] D3 (Data-Driven Documents) [Online] Available: https://d3js.org/ [Accessed 27 April 2016]
	[56] Keith, J., and J. Sambells, “DOM Scripting: Web Design with Javascript and the Document Object Model” (2nd ed.). Apress, Berkely, CA, USA, 2010.
	[57] Chaomei, C., “SVG and X3D: New XML Technologies for 2D and 3D Visualization.” In Visualizing the Semantic Web: Xml-Based Internet and Information Visualization. pp. 124-133, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
	[58] Batagelj, V., and A. Mrvar, “Pajek - Analysis and Visualization of Large Networks.” In Graph Drawing 2265, pp. 477-478, 2002.
	[59] Pajek tool [Online] Available: http://mrvar.fdv.uni-lj.si/pajek/ [Accessed 27 April 2016]
	[60] Apache Tiles Framework [Online] Available: https://tiles.apache.org/ [Accessed 20 August]

